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We consider the problem of coloring the vertices of a large sparse random graph with a given number of
colors so that no adjacent vertices have the same color. Using the cavity method, we present a detailed and
systematic analytical study of the space of proper colorings (solutions). We show that for a fixed number of
colors and as the average vertex degree (number of constraints) increases, the set of solutions undergoes
several phase transitions similar to those observed in the mean field theory of glasses. First, at the clustering
transition, the entropically dominant part of the phase space decomposes into an exponential number of pure
states so that beyond this transition a uniform sampling of solutions becomes hard. Afterward, the space of
solutions condenses over a finite number of the largest states and consequently the total entropy of solutions
becomes smaller than the annealed one. Another transition takes place when in all the entropically dominant
states a finite fraction of nodes freezes so that each of these nodes is allowed a single color in all the solutions
inside the state. Eventually, above the coloring threshold, no more solutions are available. We compute all the
critical connectivities for Erdés-Rényi and regular random graphs and determine their asymptotic values for a
large number of colors. Finally, we discuss the algorithmic consequences of our findings. We argue that the
onset of computational hardness is not associated with the clustering transition and we suggest instead that the
freezing transition might be the relevant phenomenon. We also discuss the performance of a simple local

Walk-COL algorithm and of the belief propagation algorithm in the light of our results.

DOLI: 10.1103/PhysRevE.76.031131

I. INTRODUCTION

Graph coloring is a famous yet basic problem in combi-
natorics. Given a graph and g-colors, the problem consists in
coloring the vertices in such a way that no connected vertices
have the same color [1]. The celebrated four-colors theorem
assures that this is always possible for planar graphs using
only four colors [2]. For general graphs, however, the prob-
lem can be extremely hard to solve and is known to be NP
complete (NP states for nondeterministic polynomial time)
[3], so that it is widely believed that no algorithm can decide
in a polynomial time (with respect to the size of the graph) if
a given arbitrary instance is colorable or not. Indeed, the
problem is often taken as a benchmark for the evaluation of
the performance of algorithms in computer science. It also
has an important practical application as time tabling, sched-
uling, register allocation in compilers or frequency assign-
ment in mobile radios.

In this paper, we study colorings of sparse random graphs
[4,5]. Random graphs are one of the most fundamental
sources of challenging problems in graph theory since the
seminal work of Erdés and Rényi [6] in 1959. Concerning
the coloring problem, a crucial observation was made by
focusing on typical instances drawn from the ensemble of
random graphs with a given average vertex connectivity c: as
¢ increases a threshold phenomenon is observed. Below a
critical value ¢ a proper coloring of the graph with g colors
exists with a probability going to one in the large size limit,
while beyond ¢, it does not exist in the same sense. This
sharp transition also appears in other constraint satisfaction
problems (CSPs) such as the satisfiability of Boolean formu-
las [1]. The existence of the sharp COLorable/UNCOLorable
(COL/UNCOL) transition was partially [85] proven in [7],
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and computing rigorously its precise location is a major open
problem in graph theory. Many upper and lower bounds were
established [8-15] for Erdds-Rényi and regular random
graphs.

It was also observed empirically [16,17] that deciding col-
orability becomes on average much harder near to the color-
ing threshold ¢, than far away from it. This onset of compu-
tational hardness cannot be explained only by the simple fact
that near to the colorable threshold the number of proper
colorings is small [18]. Some progress in the theoretical un-
derstanding has been done by the analysis of search algo-
rithms [19,20]. For the coloring problem, it was proven [21]
that a simple algorithm g-colors almost surely in linear time
random graphs of average connectivity c=gq In g—3¢/2 for
all g=3 (see [21] for references on previous works). For
three-coloring the best algorithmic lower bound is ¢=4.03
[10]. An important and interesting open question [22] is the
existence of an €>0 and of a polynomial algorithm which
g-colors almost surely a random graph of connectivity ¢
=(1+€)q In g for arbitrary large q.

The sharp coloring threshold and the onset of hardness in
its vicinity has also triggered a lot of interest within the
statistical physics community following the discovery of a
close relation between constraint satisfaction problems and
spin glasses [23,24]. In physical terms, solving a CSP con-
sists in finding ground states of zero energy. The limit of
infinitely large graphs corresponds to the thermodynamic
limit. In the case of the g-coloring problem, for instance, one
studies the zero temperature behavior of the antiferromag-
netic Potts model [25]. Using this correspondence, a power-
ful heuristic tool called the cavity method has been devel-
oped [24,26-28]; it allows an exact analytical study of the
CSPs on sparse random graphs. Unfortunately, some pieces
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FIG. 1. A sketch of the set of solutions when the average connectivity (degree) is increased. At low connectivities (on the left), all
solutions are in a single cluster. For larger c, clusters of solutions appear but the single giant cluster still exists and dominates the measure.
At the dynamic/clustering transition c,, the phase space slits in an exponential number of clusters. At the condensation/Kauzmann transition
¢, the measure condenses over the largest of them. Finally, no solutions exist above the COL/UNCOL transition c,. The rigidity/freezing
transition ¢, (which might appear before or after the condensation transition) takes place when the dominating clusters (the minimal set of
clusters that covers almost all proper colorings) start to contain frozen variables. The clusters containing frozen variables are colored in black

and those which do not are colored in gray.

are still missing to make the cavity method a rigorous tool
although many of its results were rigorously proven. The
cavity method is equivalent to the famous replica method
[29] (and unfortunately for clarity, it has also inherited some
of its notations, as we shall see).

The cavity method and the statistical physics approach
have been used to study the g-coloring of random graphs in
[30-32]. The coloring threshold c, was calculated [30], the
self-consistency of the solution checked [31], and the large ¢
asymptotics of the coloring threshold computed [31]. These
results are believed to be exact although proving their valid-
ity rigorously remains a major subject in the field.
Nevertheless—as the results obtained for the random satisfi-
ability problem [28,33,34]—they agree perfectly with rigor-
ous mathematical bounds [8-13,15], and with numerical
simulations. The coloring threshold is thus fairly well under-
stood, at least at the level of the cavity method.

A maybe more interesting outcome of the statistical phys-
ics analysis of the CSPs was the identification of a new tran-
sition, which concerns the structure of the set of solutions,
and that appears before the coloring threshold [24,28,35]:
while at low connectivities all solutions are in a single pure
state (cluster) [86], the set of solutions splits in an exponen-
tial number of different states (clusters) at a connectivity
strictly smaller than c¢,. Roughly speaking, clusters are
groups of nearby solutions that are in some sense discon-
nected from each other. Recently, the existence of the clus-
tered phase was proven rigorously in some cases for the sat-
isfiability problem [36,37]. A major step was made by
applying the cavity equations on a single instance: this led to
the development of a very efficient message-passing algo-
rithm called survey propagation (SP) that was originally
used for the satisfaction problem in [24] and later adapted for
the coloring problem in [30]. Survey propagation allows one
to find solutions of large random instances even in the clus-
tered phase and very near to the coloring threshold.

Despite all this success, the cavity description of the clus-
tered phase was not complete in many aspects, and a first
improvement has been made with the introduction of a re-
fined zero temperature cavity formalism that allows a more
detailed description of the geometrical properties of the clus-
ters [38,39]. We pursue in this direction and give for the first
time a detailed characterization of the structure of the set of

solutions. We observed, in particular, that the clustering
threshold was not correctly computed, that other important
transitions were overlooked, and the global picture was
mixed up. The corrected picture that we describe in this pa-
per is the following: when the connectivity is increased, the
set of solutions undergoes several phase transitions similar to
those observed in mean field structural glasses (we sketch
these successive transitions in Fig. 1). First, the phase space
of solutions decomposes into an exponential number of
states, which are entropically negligible with respect to one
large cluster. Then, at the clustering threshold c,, even this
large state decomposes into an exponential number of
smaller states. Subsequently, above the condensation thresh-
old c,, most of the solutions are found in a finite number of
the largest states. Eventually, the connectivity c, is reached
beyond which no more solutions exist. Another important
transition, which we refer to as rigidity, takes place at c,
when a finite fraction of frozen variables appears inside the
dominant pure states (those containing almost all the solu-
tions). All those transitions are sharp and we computed the
values of the corresponding critical connectivities.

A nontrivial ergodicity breaking takes place at the cluster-
ing transition; in consequence uniform sampling of solutions
becomes hard. On the other hand, clustering itself is not re-
sponsible for the hardness of finding a solution. Moreover,
until the condensation transition many results obtained by
neglecting the clustering effect are correct. In particular, for
all ¢<c,: (i) the number of solutions is correctly given by
the annealed entropy (and, for general CSP, by the replica
symmetric entropy), and (ii) a simple message-passing algo-
rithm such as belief propagation (BP) [40,41] converges to a
set of exact marginals (i.e., the probability that a given node
takes a given color). In consequence we can use BP plus a
decimationlike strategy to find proper colorings on a given
graph. Finally, we give some arguments to explain why the
rigidity transition is a better candidate for the onset of com-
putational hardness in finding solutions.

Our results are obtained within the one-step replica sym-
metry breaking approach, and we believe (and argue partially
in Sec. IV), that our results would not be modified by con-
sidering further steps of RSB (as opposed to previous con-
clusions [31]).

A shorter and partial version of our results, together with
a study of similar issues in the satisfiability problem, was
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already published in [42]. We refer to [43] for a detailed
discussion of the satisfiability problem. The paper is orga-
nized as follows: In Sec. II, we present the model. In Sec. III,
we introduce the cavity formalism at the so-called replica
symmetric level, and discuss in detail why and where this
approach fails. In Sec. IV we take into account the existence
of clusters of solutions and employ the so-called one-step
replica symmetry breaking formalism to describe the proper-
ties of clusters. The results for several ensembles of random
graphs are then presented in Sec. V. We finally discuss the
algorithmic implications of our findings in Sec. VI and con-
clude by a general discussion. Some appendixes with de-
tailed computations complete the paper.

II. MODEL
A. Definition of the model

For the statistical physics analysis of the g-coloring prob-
lem [30,32,44] we consider a Potts [25] spin model with
antiferromagnetic interactions where each variable s; (spin,
node, vertex) is in one of the ¢ different states (colors) s
=1,...,q. Consider a graph G=(V, &) defined by its vertices
V={1,...,N} and edges (i,j) € £, which connect pairs of
vertices i,j € V; we write the Hamiltonian as

H{sh= 2 osis)). (1)

(ij)e€

With this choice there is no energy contribution for neigh-
bors with different colors, but a positive contribution other-
wise. The ground state energy is thus zero if and only if the
graph is g-colorable. The Hamiltonian leads to a Gibbs mea-
sure [45] over configurations (where 8 is the inverse tem-
perature) as follows:

1
plfsh) = e D, @
Zy
In the zero temperature limit, where S— e, this measure
becomes uniform over all the proper colorings of the graph.

B. Ensembles of random graphs

We will consider ensembles of graphs that are given by a
degree distribution Q(k). The required property of Q(k) is
that its parameters should not depend on the size of the
graph. All the analytical results will concern only very large
sparse graphs (N— o). Provided the second and higher mo-
ments of Q(k) do not diverge, such graphs are locally tree-
like in this limit [4,5]. More precisely, call a d-neighborhood
of a node i the set of nodes which are at distance at most d
from i. For d arbitrary but finite the d-neighborhood is al-
most surely a tree graph when N— 0. This property is con-
nected with the fact that the length € of the shortest loops (up
to a finite number of them) scales with the graph size as ¢
~In(N). We will consider the two following canonical de-
gree distribution functions:

(i) Uniform degree distribution Q(k)=8(k—c) correspond-
ing to the c-regular random graphs, where every vertex has
exactly ¢ neighbors.

PHYSICAL REVIEW E 76, 031131 (2007)

(i) Poissonian degree distribution Q(k)=e~“c¥/k! corre-
sponding to the Erd8s and Rényi (ER) random graphs [6]. A
simple way to generate graphs with N vertices from this
ensemble is to consider that each link is present with prob-
ability ¢/(N—-1). The binomial degree distribution converges
to the Poissonian in the large size limit.

It will turn out that the cavity technics simplify consider-
ably for the regular graphs. However, ER graphs have the
advantage that their average connectivity is a real number
that can be continuously tuned, which is obviously very con-
venient when one wants to study phase transitions. It is thus
useful to introduce a third ensemble, which still has the com-
putational advantage of regular graphs, but that at the same
time gives more freedom to vary the connectivity:

(iii) Biregular random graphs, where nodes with connec-
tivity ¢, are all connected to nodes with connectivity c¢,, and
vice versa. There are thus two sets of nodes with degree
distributions Q(k)=d8(k—c,) and Q(k)=8(k—c,).

Notice that these graphs are bipartite by definition and
therefore have always a trivial two-coloring, which we will
have to dismiss in the following. This can be easily done
within the cavity formalism (it is equivalent to neglecting the
ordered “crystal” phase in glass models [46]).

In the first two cases, the parameter ¢ plays the role of the
average connectivity c=2kQ(k). In the cavity approach, a
very important quantity is the excess degree distribution
Q,(k), i.e., the distribution of the number of neighbors, dif-
ferent from j, of a vertex i adjacent to a random edge (ij). It
holds:

~ (k+1)Qk+1)

c

Q,(k) 3)
This distribution remains Poissonian for Erdés-Rényi graphs,
whereas the excess degree is equal to ¢—1 in the case of
regular graphs. In the biregular case, there are two sets of
nodes with excess degrees cl1—1 and ¢2—1.

III. CAVITY FORMALISM AT THE REPLICA SYMMETRIC
LEVEL

We start by reviewing the replica symmetric (RS) version
of the cavity method [26,27] and its implications for the
coloring problem. In the last part of the section we show
when and why the RS approach fails.

A. Replica symmetric cavity equations

The coloring problem on a tree is solved exactly by an
iterative method called the belief propagation algorithm [40]
(note some boundary conditions have to be imposed, other-
wise a tree is always two-colorable) that is equivalent to the
replica symmetric cavity method [41]. At this level, the
method is in fact a classical tool in statistical physics to deal
with that tree structure that dates back to the original ideas of
Bethe, Peierls, and Onsager [47]. It allows one to compute
the marginal probabilities that a given node takes a given
color and, in the language of statistical physics, observables
like energy, entropy, average magnetization, etc. The appli-
cability of the method goes, however, beyond tree graphs and
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FIG. 2. Iterative construction of a tree by adding a new Potts
spin.

we will discuss when it is correct for random locally treelike
graphs in Sec. III C.

Let us now describe the RS cavity equations. Denote z#;__’j
the probability that the spin i has color s; when the edge (15 7)
is not present and consider the iterative construction of a tree
in Fig. 2. The probability follows the recursive relation

1

—j _ —B —i
'ﬁvi j—ZHj H_ze "k"//;k
0 kei-j sp
1 .
= T D-a-emy, )
0 kei-j

where Z; 7 is a normalization constant (the cavity partition
sum) and B the inverse temperature. The notation k € i—j
means the set of neighbors of i except j. The normalization
Zfﬁj is related to the free energy shift after the addition of the
node i and the edges around it, except (ij), as

Zy = e P (5)

In the same way, the free energy shift after the addition of the
node i and all the edges around it is

e_BAFizzgzgH[l_(l_e—ﬁ)lﬁlg—”]_ (6)

s kei

The 26 is at the same time the normalization of the total
probability that a node i takes color s; (the marginal of i),
which reads

. 1 .
W= LI == Py, (7)
Okei

The free energy shift after the addition of an edge (ij) is
A=z =1 - (1- e Y @)
N

The free energy density in the thermodynamic limit is then
given by (see, for instance, [26])

(B = %(E AFi E AFU’>. )

Note that this relation for the free energy is variational, i.e.,
that if one differentiates with respect to (3, then only the
explicit dependence needs to be considered (see [26] for de-
tails). The energy (the number of contradictions) and the cor-
responding entropy (the logarithm of the number of solutions
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with a given energy) densities can be then computed from
the Legendre transform

= Bf(B) =~ Be +s(e), (10)

where f=F/N, e=E/B, and s=S/N are intensive variables.

The learned reader will notice that in some previous
works using the cavity method [30,31], these equations were
often written for a different object than the probabilities .
Instead, the so-called cavity magnetic fields /4 and biases u
were considered. The two approaches are related via

. o i
e P = iyl = 1T e#x " (11)
! kei-j

Strictly speaking the ¢ are “cavity probabilities” while 4 and
u are “cavity fields”; however, ¢ are sometimes also referred
to as cavity fields (or messages) in the literature, and the
reader will thus forgive us if we do so.

Note that each of the two notations is suitable for per-
forming the zero temperature limit in a different way: in the
first one we fix the energy zero and we obtain the zero tem-
perature BP recursion, which gives the marginal probabilities
for each variable, while in the second case, we obtain a sim-
pler recursion called warning propagation (49) that deals
with the energetic contributions but neglects the entropic
ones [28,30]. This is the origin of the discrepancy between
the RS results of Refs. [32,30]. As we shall see, the differ-
ences between these two limits will be an important point in
the paper.

B. Average over the ensemble of graphs and the RS solution

To compute (quenched) averages of observables over the
considered ensemble of random graphs given by the degree
distribution Q(k) we need to solve the self-consistent cavity
functional equation

k
P =2 QI | dyP)dly-Fhl, (12)
k

i=1

where Q,(k) is the distribution of the number of neighbors
given that there is already one neighbor, and the function
F({/}) is given by Eq. (4). Beware that ¢ here is a
g-components vector while we omit the vector notation to
lighten the reading. This equation is quite complicated since
the order parameter is nontrivial, but we can solve it numeri-
cally using the population dynamics method described in
[26,27].

Throughout this paper we will search only for the color
symmetric functions P(4), i.e., invariant under permutation
of colors. Clearly with this assumption we might miss some
solutions of Eq. (12). Consider, for example, ¢ > 2 colors and
the ensemble of random biregular graphs. Since every bipar-
tite graph is two-colorable there are g(g—1)/2 corresponding
color asymmetric solutions for P(¢). For the ensemble of
random graphs considered here, we later argue that this as-
sumption is, however, justified.

Another important observation is that for regular graphs
Eq. (12) crucially simplifies: the solution facrorizes [48] in
the sense that the order parameter ¢ is the same for each
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edge. This is due to the fact that, locally, every edge in such
a regular graph has the same environment. All edges are
therefore equivalent and thus the distribution P(¢) has to be
a delta function. For the biregular graphs, the solution of Eq.
(12) also factorizes, but the two sets of nodes of connectivity
¢, and ¢, (each of them being connected to the other) have to
be considered separately.

It is immediate to observe that P()=48(yp—1/q) (i.e.,
each of the ¢ components of each cavity field ¢ equals 1/¢),
is always a solution of Eq. (12). By analogy with magnetic
systems we shall call this solution paramagnetic. Numeri-
cally, we do not find any other solution in the colorable
phase. For regular random graphs the paramagnetic solution
is actually the only factorized one. The number of proper
colorings predicted by the RS approach is thus easy to com-
pute. Since all messages are of the type P()=8(¢p—1/q),
the free energy density simply reads

—_ B
e ) (13)
q

The entropy density at zero temperature thus follows:

—,BfRS=1nq+§ln<l—

c 1
sRs=lnq+Eln —; . (14)

It coincides precisely with the annealed (first moment) en-
tropy. We will see in the following that, surprisingly, the
validity of this formula goes well beyond the RS phase (ac-
tually until the so-called condensation transition).

C. Validity conditions of the replica symmetric solution

We used the main assumption of the replica symmetric
approach when we wrote Eq. (4): we supposed that the cav-
ity probabilities l/lf*” for the neighbors k of the node i are
“sufficiently” inde;;endent in the absence of the node i, be-
cause only then the joint probability factorizes. This assump-
tion would be true if the lattice were a tree with noncorre-
lated boundary conditions, but loops, or correlations in the
boundaries, may create correlations between the neighbors of
node i (in the absence of i) and the RS cavity assumption
might thus cease to be valid in a general graph. The aim here
is to be more precise and quantify this statement both from a
rigorous and heuristic point of view.

1. Gibbs measure uniqueness condition

Proving rigorously the correctness of the RS cavity as-
sumption for random graphs is a crucial step that has not yet
been successfully overcome in most cases. The only success
so far was obtained by proving a far too strong condition: the
Gibbs measure uniqueness [49-52]. Roughly speaking, the
Gibbs measure (2) is unique if the behavior of a spin i is
totally independent from the boundary conditions (i.e., very
distant spins) for any possible boundary conditions. More
precisely, let us define {s;} colors of all the spins at a distance
at least / from the spin i. The Gibbs measure wu is unique if
and only if the following condition holds for every i (and in
the limit N — o):
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q
s sup E |,U«(Si|{51}) - M(Si|{sz,})| l—> 0, (15)
{sihds)ysi=1 -

where the average is over the ensemble of graphs. In [50,51],
it was proven that the Gibbs measure in the coloring problem
on random regular graphs is unique only for graphs of degree
c¢<gq. To the best of our knowledge, this has not been com-
puted for Erdds-Rényi graphs (later in this section, we argue
on the basis of a physical argument that it should be ¢ <g
—1 in this case).

2. Gibbs measure extremality condition

In many cases, the RS approach is observed to be correct
beyond the uniqueness threshold. It was thus suggested in
[53] (see also [42]) that the Gibbs measure extremality pro-
vides a proper criterion for the correctness of the replica
symmetric assumption. Roughly speaking, the difference be-
tween uniqueness and extremality of a Gibbs measure is that
although there may exist boundary conditions for which the
spin i is behaving differently than for others, such boundary
conditions have a null measure if the extremality condition is
fulfilled. Formally (and keeping the notations from the pre-
vious section), the extremality corresponds to

q
E[E s 2 |plsills ) — uis,)l =0 (16)

{s} si=1

In mathematics the “extremal Gibbs measure” is often used
as a synonym for a “pure state.” Recently, the authors of [53]
provided rigorous bounds for the Gibbs measure extremality
of the coloring problem on trees.

There exist two heuristic equivalent approaches to check
the extremality condition. In the first one, one studies the
divergence of the so-called “point-to-set” correlation length
[54,55]. The second one is directly related to the cavity for-
malism: one should check for the existence of a nontrivial
solution of the one-step replica symmetry breaking equations
(IRSB) at m=1 (see Sec. V). Both these analogies were
remarked in [53] and exploited in [42]. We will show in Sec.
V that the extremality condition ceases to be valid at the
clustering threshold c;, beyond which the 1RSB formalism
will be needed.

3. Local stability: A simple self-consistency check

A necessary, simple to compute but not sufficient, validity
condition for the RS assumption is the nondivergence of the
spin glass susceptibility (see, for instance, [56]). If it di-
verges, a spin glass transition occurs, and the replica symme-
try has to be broken [29]. The local stability analysis thus
gives an upper bound to the Gibbs extremality condition,
which remarkably coincides with the rigorous upper bound
of [57]. This susceptibility is defined as

1
XSG:KIE <Sisj>%' (17)
ij

The connectivities above which it diverges at zero tempera-
ture can be computed exactly within the cavity formalism
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(we refer to Appendix A for the derivation). It follows for
regular and Erdés-Rényi graphs,

RE=q*-2q+2, cps=q"-2q+1, (18)

while the stability of the biregular graphs of connectivities

c1,c, is  equivalent to regular graphs with c¢=1
+ \ (C] - 1)(C2— 1)

Note that for regular and ER graphs the RS instability
threshold is in the colorable phase only for g=3. Indeed the
five-regular graphs are three-colorable [31] (and rigorous re-
sults in [13,14]) and exactly critical since cg§(3)=5, and for
ER graphs the COL/UNCOL transition appears at c,~4.69
[30] while cRs(3) 4. This means that the replica symmetry
breaking transition appears continuously at the point cgg so
that above it the RS approach is not valid anymore. For all
g =4, however, the local stability point is found beyond the
best upper bound on the coloring threshold for both regular
and ER graphs. In this case, the extremality condition will
not be violated by the continuous mechanism, but we will
see that, instead, a discontinuous phase transition, as happens
in mean field structural glasses, will take place.

Interestingly enough, a similar computation can be made
for the ferromagnetic susceptibility szj%,Ei, {8870 (see
again Appendix A). It diverges at c=g¢ for regular graph and
c=g—1 for Erd8s-Rényi graphs. This divergence (called
modulation instability in [56]) would announce the transition
towards an antiferromagnetic ordering on a tree, which is,
however, incompatible with the frustrating loops in a random
graph (although such order might exist on the biregular
graphs). This is precisely the solution we dismiss when con-
sidering only the color symmetric solution of Eq. (12). Note,
however, that the presence of this instability shows that the
problem ceases to a have a unique Gibbs state (although it is
still extremal) as for some specific (and well-chosen) bound-
ary conditions, an antiferromagnetic solution may appear. In-
deed it coincides perfectly with the rigorous uniqueness con-
dition c=¢q for regular graphs, and suggests strongly that the
uniqueness threshold (or at least an upper bound) for Erdds-
Rényi graphs is c=g—1.

IV. ONE-STEP REPLICA SYMMETRY BREAKING
FRAMEWORK

So far we described the RS cavity method for coloring
random graphs and explained that the extremality of the
Gibbs measure gives a validity criterion. We now describe
the one-step replica symmetry breaking cavity solution
[26,27]. In this approach, the nonextremality of the Gibbs
measure is cured, by decomposing it into several parts (pure
states, clusters) in such a way that within each of the states
the Gibbs measure becomes again extremal.

This decomposition has many elements or states, not just
a finite number like the g states of the usual ferromagnetic
Potts models. It is actually found that the number of pure
states is growing exponentially with the size of the system.
Let us define the state-entropy function 2 (f)—called the
complexity—which is just the logarithm of the number of
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states with internal free energy density f, ie., N(f)
=exp[N2(f)]. In the glass transition formalism, this com-
plexity is usually referred to as the configurational entropy.
Dealing with exponentially many pure states is obviously a
nightmare for all known rigorous approaches to the thermo-
dynamic limit. The heuristic cavity method overcomes this
problem elegantly, as was shown originally in the seminal
work of [26,27].

Another very useful intuition about the IRSB cavity
method comes from the identification of states a with the
fixed points {i} of the belief propagation equations (4). The
goal is thus to compute the statistical properties of these
fixed points. Each of the states is weighted by the corre-
sponding free energy (9) to the power m, where m is just a
parameter analogous to the inverse temperature B (in the
literature m is often called the Parisi replica symmetry break-
ing parameter [29,58]). The probability measure over states
{4y} is then

e~ BNy , (19)

A = Zy{p)" zi

] 1

where Z; is just the normalization constant. To write the
analog of the belief propagation equations we need to define
the probability (distribution) P~/(4/~7) of the fields ¢/~
This can be obtained from those of incoming fields as

P T [ anad
kei-j

- FAgk - DIZg )

=) dw-pEr e

The function F is given by Eq. (4) and the delta function
ensures that the set of fields ¢/~ is a fixed point of the belief
propagation (4). The reweighting term (Z, /)" takes into ac-
count the change of the free energy of a state after the addi-
tion of a cavity spin i and its adjacent edges except (ij), as
defined in Eq. (5). This term appears for the same reason as
a Boltzmann factor e #%:s in Eq. (4): it ensures that the state
a is weighted by (Z,,)" in the same way a configuration {s} is
weighted by e #"4) in Eq. (2). Finally, Z) is a normaliza-
tion constant. In the second line of Eq. (20) we introduced an
abbreviation that will be used from now on to make the
equations more easily readable. The notation POP comes
from “population dynamics,” which refers to the numerical
method we use to solve Eq. (20). The probability distribution
P(i) can be represented numerically by a set of fields taken
from P(#), and then the probability measure P(i)di be-
comes uniform sampling from this set; for more details see
Appendix D.

We define the “replicated free energy” and compute it in
analogy with Eq. (9) as
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d(B,m) = - ﬁ;N In(Z,) = %(E Ad - E] Aqﬂ'),
(21)
where
e—ﬁmAcbi _ J e—BmAFi’ e—ﬁmmif _ f e—BmAFij.
POP POP
(22)

Putting together Egs. (19) and (21) we have

7, = e BmNeBm) _ S (=BnNfuh J dfeMBB-3(],
w !
(23)

where the sum over {¢} is over all states (or BP fixed points).
In the interpretation of [59] m is the number of replicas of
the system, thus the name “replicated free energy” for
®(B,m). Note that we are using the word “replica” only to
refer to the established terminology as no replicas are needed
within the cavity formalism. From the saddle point method,
it follows that the Legendre transform of complexity func-
tion X (f) gives the replicated free energy ®(m),

= Bm®(B,m) = - Bmf(B) + X(f). (24)

Notice that this equation is correct only in the highest order
in the system size N, i.e., in densities and at the thermody-
namic limit. From the properties of the Legendre transform
we have

3 =pm*6,®(Bm), [=3,[mP(Bm)],  Bm=dE(f).
(25)

Thus, from Eq. (21), the free energy reads

J AF e—ﬁmAF" f AF e—BmAF"J'
POP POP

== -2

~ ; " B ij
f e BmAF' ) f e BmAF'
POP POP

When the parameter m is equal to one (the number of repli-
cas is actually one in the approach of [59]), then
-BD(B,1)=—Bf(B)+2(f) reduces to the usual free energy
function considered in the RS approximation

(26)

@(ﬁ,l):e—%:e—Tsml, 27)

where s is the internal entropy density of the corresponding
clusters and s, is the total entropy density of the system.

A. Analyzing the 1RSB equations

Combining Egs. (21) and (26) we can compute 2 and f
for each value m, which gives us implicitly 2(f). To compute
the thermodynamic observables in the model we have to
minimize the total free energy f,,,=f(8)—2/B over such val-
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ues of f where the complexity X(f) is non-negative (so that
the states exist in the thermodynamic limit). The minimum of
the total free energy corresponds to a value of parameter m
=m" and states with the free energy f* dominate the thermo-
dynamics. Three different cases are then observed:

(a) If there is only the trivial (replica symmetric) solution
at m=1, then the Gibbs measure (2) is extremal and the
replica symmetric approach is correct. If at the same time a
nontrivial solution exists for some m # 1, then the clusters
corresponding to this solution have no influence on the ther-
modynamics.

(b) If there is a nontrivial solution at m=1 with a positive
complexity, then m"“=1 minimizes the total free energy. The
system is in a clustered phase with an exponential number of
dominating states.

(c) If, however, the complexity is negative at m=1, then
the corresponding states are absent with probability one in
the thermodynamic limit. Instead the total entropy is domi-
nated by clusters corresponding to m" such that 3(m")=0:
the system is in a condensed phase. Note that the condition
3(m")=0 corresponds to the maximum of the replicated free
energy (21).

The transitions between these cases are well known in
structural glass phenomenology where they appear when the
temperature is lowered [60,61]. The transition from the para-
magnetic phase to the clustered one is usually referred to as
the dynamical transition [62] or the clustering transition. It
is not a true thermodynamic transition as the total free energy
of the system at m"=1 is still equal to the replica symmetric
one [Eq. (9)] (see Appendix C) and thus is an analytical
function of connectivity. However, the phase space is broken
into exponentially many components and, as a consequence,
the dynamics fall out of equilibrium beyond this transition.

The second transition from the clustered to the condensed
phase is, however, a genuine thermodynamic transition (the
free energy has a discontinuity in the second derivative at c,)
and is called the replica symmetry breaking transition, or the
static glass transition. At this point the measure condenses
into few clusters, and we shall call it the condensation tran-
sition. In structural glasses, it corresponds to the well known
Kauzmann transition [63]. The sizes of the clusters in the
condensed phase follow the so-called Poisson-Dirichlet pro-
cess, which is discussed shortly in Appendix B.

The procedure to compute the replicated free energy (21)
and the related observables was described above for a single
large random graph. To compute the averages over the en-
semble of random graphs, we need to solve an equation
analogous to Eq. (12),

k
PlP(W)]=2 Q] | aP'(W)PLP(¥)]8 P (%)
k

i=1
- FH({P (D], (28)

where the functional F, is given by Eq. (20). Solving this
equation for a general ensemble of random graphs and a
general parameter m is a numerically quite tedious problem.
In the population dynamics algorithm [26,27] we need to
deal with a population of populations of g-components fields.
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It is much more convenient to look at the ensemble of ran-
dom regular graphs where a factorized solution P[P()]
=8 P(y) - Py()] must exist. Then we are left with only one
functional equation, Eq. (20).

Before discussing the zero temperature limit, we would
like to point out that there exists another very important case
in which Eq. (28) simplifies. For m=1, as first remarked and
proved in [53], when dealing with the problem of reconstruc-
tion on trees, the equations can be written (and numerically
solved) in a much simpler way. We again refer to Appendix
C for details. Especially for the Poissonian random graphs
this simplification is very useful.

B. Zero temperature limit

We now consider the zero temperature limit S— o of the
IRSB equations (24)—(28) to study the coloring problem. In
most of the previous works [27,28,30] the energetic zero
temperature limit was employed. The 8— oo limit of Eq. (24)
was taken in such a way that mB=y remains constant. The
replicated free energy (24) then becomes

= y®P.(y) == ye +Z(e). (29)

It is within this approach that the survey propagation (SP)
algorithm was derived. The connectivity at which the com-
plexity function X(e=0) becomes negative is the coloring
threshold. Above this connectivity 2.(e) was used to compute
the minimal number of violated constraints (the ground state
energy). The reweighting in Eq. (20) becomes ¢ ™A' . and
when y— e all the configurations with positive energy are
forbidden.

In this paper we adopt the entropic zero temperature limit,
suggested originally in [38,39]. The difference in the two
approaches was already underlined in Sec. III A. We want to
study the structure of proper colorings, i.e., the configura-
tions of zero energy, and we thus fix the energy to zero. Then
we obtain the entropy by considering —Bf=s and introduce a
free entropy—or in replica term a “replicated entropy”—as
@ (m)=—BmP(B,m)| oo~ Equation (24) then becomes

D (m) =ms + 2(s). (30)
The belief propagation update (4) becomes

W—— IT -4, (31)

i—j
ZO kei-j

while the 1RSB equation (20) keeps the same expression
(and thus the same computational complexity).

The partition sum Z; in Eq. (2) becomes in this limit the
number of proper colorings or solutions. The clusters are
now sets of such solutions, and are weighted by their size to
the power m. The free entropy ®,(m) is then computed as

®,(m) = ]%(E ADi - 2} Acpf;f)

- 1(2 lnf (AZy" = lnf (AZ"J’)*“) ,
N i POP ij POP

(32)
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where AZ' and AZV are given by Eqs. (5) and (6). The analy-
sis from the previous section is valid also for the entropic
zero temperature limit. The information extracted from the
number of clusters of a given size %(s) is one of the main
results of this paper and will be discussed and interpreted in
Sec. V.

C. Role of frozen variables

In this section we discuss the presence and the role of the
frozen variables and explain the connection between the en-
ergetic and the entropic zero temperature limits. This allows
us to revisit (and extend) the survey propagation equations.
Remember that the components of the cavity field Wf’ are
the probabilities that the node i takes the color s; when the
constraint on the edge ij is not present. In the zero tempera-
ture limit we can classify them in two categories:

(i) A hard field corresponds to the case when all compo-
nents of /~/ are zero except one, s. Then only that color is
allowed for the spin i, in the absence of edge (ij).

(ii) A soft field corresponds to the case when more than
one component of lﬂ /is nonzero. The variable i is thus not
frozen in the absence of edge (ij), and the colors of all the
nonzero components are allowed.

This distinction is also meaningful for the full probabili-
ties zﬂ:l_ [Eq. (4)], if g[/;l_ is a hard field then the variable i is
frozen. In the colorable region there cannot exist a finite
fraction of frozen variables (even if we consider properly the
permutational symmetry of colors) since by adding a link the
connectivity changes by 1/N but the probability of becoming
uncolorable would be finite. On the contrary, in the 1RSB
picture, we observe that a finite fraction of variables can be
frozen within a single cluster. In other words, in all the so-
lutions that belong to this given cluster a finite fraction of
variables can take one color only. By adding a link into the
graph, the connectivity grows by 1/N, and there is a finite
probability that a cluster with frozen variables disappears.
The distinction between hard and soft fields is useful not
only for the intuition about clusters, but also for the analysis
of the cavity equations and it also leads to the survey propa-
gation algorithm.

The distribution of fields over states P//(/ /) [Eq. (20)]
can be decomposed into the hard- and soft-field parts

P = 2 7S =) + oy TP ),

(33)

where P~/ is the distribution of the soft fields and the nor-
malization is =97 7/=1.

Interestlngly, the presence of frozen variables in the en-
tropically dominating clusters is connected to the divergence
of the size of average minimal rearrangement [55,64]. Pre-
cisely, choose a random proper coloring {s} and a random
node i in the graph. The average minimal rearrangement is
the Hamming distance to the nearest solution in which node
i has a color different from s; averaged over the nodes i, the
proper colorings, and graphs in the ensemble.
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Another interesting role of the frozen variables arises
within the whitening procedure, introduced in [65] and stud-
ied, between others, for the satisfiability problem in [66,67].
This procedure is equivalent to the warning propagation
(WP) update [Eq. (49)], which we outlined in Sec. III A.
Whitening is able to identify if a solution belongs to a cluster
with frozen variables or not. Particularly, the result of the
whitening is a set of hard cavity fields.

Since the survey propagation algorithm is computing sta-
tistics over the states that contain hard fields, then the solu-
tion found after decimating the survey propagation result
should a priori also contain hard fields. However, recent
works show that if one applies the whitening procedure start-
ing from solutions found by SP on large graphs, whitening
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converges every time to the trivial fixed point (see detailed
studies for K-SAT in [66,67]). A possible solution to this
apparent paradox is discussed in Sec. VI.

1. Hard fields in the simplest case, m=0

Let us now consider the survey propagation equations
originally derived in [30] from the energetic zero tempera-
ture limit (29) when y — . For simplicity we will write them
only for the three-coloring. We consider the 1RSB cavity
equation (20) for m— 0, then the reweighting factor (Z{; /)"
is equal to zero when the arriving hard fields are contradic-
tory, and equal to one otherwise. The update of probability
7, that a field is frozen in direction s is then written from Eq.
(20),

IT a-7"-2 11 G+ 0+ 11 76

kei-j

= _

p#s kei—j

kei-j

7 = : : : .
2 I a-g)-2 11 G "+ 7,70+ T 26

p kei-j

p kei-j

In the numerator there is a telescopic sum counting the prob-
ability that color s and only color s is not forbidden by the
incoming fields. In the denominator the telescopic sum is
counting the probability that there is at least one color which
is not forbidden. If we do not want to actually find a proper
coloring on a single graph but just to compute the replicated
free energy or entropy, we can further simplify Eq. (34) by
imposing the color symmetry. Indeed, the probability that in
a given state a field is hard in direction of a color s has to be
independent of s (except s=0, which corresponds to a soft
field). Then Eq. (34) becomes, now for a general number of
colors g,

o —1 ‘
2(—1)1("1 )H.[l—(Hl)nk_”]
A=l = 5 =

q — 7 .
g(—l)l(l“) [T [1-u+n7=1

kei-j

(35)

Note that since d2(s)/ds=-m, the value m=0 corre-
sponds to the point where the function X(s) has a zero slope.
If a nontrivial solution of Eq. (35) exists, then 2(s)|,,_o is the
maximum of the curve X(s) and is counting the logarithm of
the number of clusters of size s, which is due to the expo-

|
771'4}]'='%/’J7 dZP"™(Z) 2w ({7 ) = @dethd(Z)Zm:

A similar equation can formally be written for the soft fields

(34)

kei-j

nential dependence, also the logarithm of the number of all
clusters, regardless of their size. There are two points that we
want to emphasize:

(1) Suppose that a nontrivial solution of Eq. (35) exists,
i.e., many clusters exist and their number can be computed
with the energetic zero temperature limit calculations. Then
the clusters might be very small and contain very few solu-
tions in comparison to bigger, less numerous clusters, or in
comparison to a giant single cluster which might still exist.
This situation cannot be decided by the energetic formalism
that weights clusters equally independently of their size.

(2) Suppose, on the contrary, that a nontrivial solution of
Eq. (35) does not exist. It might still well be that many
clusters exist, but the %(s) curve has no part with zero slope.

We will see that these two cases are actually observed.
The energetic method, which can locate the coloring thresh-
old and from which the survey propagation can be derived, is
therefore not a good tool to study the clustering transition.

2. Generalized survey propagation recursion

Let us compute how the fraction of hard fields 7 evolves
after one iteration of Eq. (20) at general m. There are two
steps in each iteration of Eq. (20). In the first step, 7 iterates
via Eq. (35). In the second step we reweight the fields. Writ-
ing P""%(Z) the—unknown—distribution of the reweightings
Z™ for the hard fields, one gets

w({7 )
m N

Zptva- (36)
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_ qﬁii}j — 1- qw({ﬂk*}l})_
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1 I VA (37)
Writing explicitly the normalization N, we finally obtain the generalized survey propagation equations
- w7~ . w _ Zeon
7= = — —, with r({7"H==2=. (38)
g7 =) +[1 = gwl{ 7~ DI~ Ziea

In order to do this recursion, the only information needed is
the ratio r between soft- and hard-field reweightings, which
is in general difficult to compute since it depends on the full
distribution of soft fields.

There are two cases where Eq. (38) simplifies so that the
hard-field recursion become independent from the soft-field
distribution. The first case is, of course, m=0 then r=1 in-
dependently of the edge (ij), and the equation reduces to the
original SP. The second case arises for m=1, where one can
use the so-called reconstruction formalism and obtain again a
closed set of equations. The computation is done in Appen-
dix C, and the SP equations at m=1 read

T Lo
n’ﬁ’=—2[(—1)l > I (1—LE n’?’)]
q 1=0 Spoe s ES keinj g=1, 7

(39)

It would be interesting in the future to use Eq. (38) in an
algorithm to find proper graph colorings, as it has been done
with the original SP equation [30]. As an approximation one
might also use a value r independent of the edge (ij), but
different from one.

For the purpose of the present work, it is important to
notice that it is also possible to use Eq. (38) in the population
dynamics to simplify the numerical evaluation of the IRSB
solution by separating the hard-field and the soft-field con-
tributions. Indeed, it gives the exact density of hard fields
provided the ratio r is calculated, which is doable numeri-
cally (see Appendix D). This allows us to monitor precisely
the hard-field density and only the soft-field part is given by
the population dynamics. This turns out to greatly improve
the precision of the numerical solution of the cavity equa-
tions and to considerably fasten the code.

3. Presence of frozen variables

A natural question is “When are the hard fields present?”
or more precisely, “When does Eq. (38) have a nontrivial
solution 7>0?" First notice that in order to constrain a node
into one color, one needs at least g—1 incoming fields that
forbid all the other colors. It means that function w({7}~})
defined in Eq. (35) is identically zero for k<<g—1 and might
be nonzero only for k=¢—1, where k is the number of in-
coming fields.

In the limit »— 0 (which corresponds to m — —) Eq. (38)
gives p=1/q if w({7~}) is positive, and 5=0 if w({7/~'})
is zero. Updating Eq. (38) on a given graph, from initial
conditions n=1/g everywhere, is equivalent to recursive re-
moving of all the nodes of connectivity smaller than g. This

shows that the first nontrivial solution with hard fields exists
if and only if the g-core [68] of the graph is extensive. For
regular graphs it is simply at connectivity c=¢g while for
Erd6s-Rényi graphs these critical connectivities can be com-
puted exactly and read, for small g, c3=3.35, c;,=5.14, c5
=6.81 [68]. Indeed we see that the first nontrivial solution to
the IRSB equation appears much before those of the original
SP equation at m=0.

On a regular graph, the equations further simplify as 7
factorizes (is edge independent) and follows a simple self-
consistent equation

1
gw(m) +[1—gw(n)lr’

This equation can be solved for every possible ratio r so that
for all c=¢g, we can compute and plot the curve 7(r). We
show the results in Fig. 3 for different numbers of colors g.
On this plot, we observe that =1/g, as predicted, for r=0.
It then gets smaller for a larger value of the ratio and, at a
critical value r.;, the solution disappears discontinuously
and only the (trivial) solution 7=0 exists. The values r;
correspond to a critical value of m,. For all m>m, no solu-
tion containing frozen variables can exist.

n=w(n) (40)

D. Validity conditions of the 1RSB solution

Now that we have discussed in detail the 1RSB formalism
the next question is “Is this approach correct?” To answer
this question, one has to test if the Gibbs measure is extremal
within the thermodynamically dominating pure states. This is
equivalent to checking if the two-step replica symmetry
breaking (2RSB) solution is nontrivial. Computing explicitly
the 2RSB solution is, however, very complicated numeri-
cally, especially for Erdds-Rényi graphs. Instead, the local
stability of the 1RSB solution towards 2RSB should be
checked, in analogy with the RS stability in Sec. III C 3. It is
indeed a usual feature in spin glass physics to observe that
the 1RSB glass phase become unstable at low temperatures
towards a more complex RSB phase and this phenomenon is
called the Gardner transition [69].

To perform the stability analysis [31,34,56,70], one first
writes the 2RSB recursion—where the order parameter is a
distribution of distributions of fields on every edge
P [ P,()]—and then two types of 1RSB instabilities have to
be considered depending on the way the 2RSB arises from
the 1RSB solution. The first type of instability—called states
aggregation—corresponds to 8 P()]— P,[P,(1)] while the
second type—called states splitting—corresponds to
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FIG. 3. The lines are solutions of Eq. (40) and give the total
fraction ¢ # of hard fields for a given value of ratio r=Z ./ Z;" , for
g=3 (a) and g=4 (b) in regular random graphs. There is a critical
value of the ratio (full point) beyond which only the trivial solution
7n=0 exists. Note that the solutions at m=0 and m=1 only exist for

a connectivity large enough.

P[S8()]— Pi[P,()]. A complete stability analysis is left for
future works, but it is worth discussing the relevance of the
results derived over the last few years [31,34,70].

The 1RSB stability was studied for the coloring problem
in [31] but only for the energetic zero temperature limit (29).
In this case the parameter y=m is conjugated to the energy.
The results derived in [31]—as well as those previously de-
rived for other problems [34,70]—thus concern only the
clusters of sizes corresponding to m=0 at zero (for y=) or
at positive (for finite y) energy. The main result of [31,34,70]
was that the 1RSB approach was stable in the vicinity of the
coloring threshold c;. As we shall see the clusters corre-
sponding to m=0 are those dominating the total entropy at
the coloring threshold, and as a consequence its location is
thus exact within the cavity approach. The states of the low-
est energy (the ground states) in the uncolorable phase also
correspond to m=0, and thus the conclusions of [31,34,70]
concerning the uncolorable phase are also correct. In particu-
lar, a Gardner transition towards further steps of RSB ap-
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pears in the uncolorable phase beyond a connectivity de-
noted ¢ in [31].

On the other hand, in the colorable phase the stability of
the entropically dominating clusters that correspond to m
>0 should be investigated. Some more relevant information
can be, however, already drawn from known results. It was
indeed found that the IRSB approach at m=0 is type I stable
for all y, and type II stable for all y>y; in the vicinity of the
coloring threshold. These results concern the states of posi-
tive energy, but keeping in mind the interpretation of y as a
slope in the T,m diagram, we see that the clusters of zero
energy corresponding to small but nonzero positive m and
zero temperature are also stable with respect to both types of
stabilities. Near the colorable threshold, the value of m”,
which describes the dominating clusters, is close to zero and
as a consequence all the dominating clusters are IRSB stable
in the vicinity of the coloring threshold. Far from the color-
ing threshold, the stability analysis of [31,34] is irrelevant. In
particular, the predictions of a full-RSB colorable phase
made in [31,34,70] is not correct. Quite the contrary; our
preliminary results indicate that all the dominating clusters
are 1RSB stable for q>3.

The three-coloring is, however, a special case as the clus-
tering transition is continuous. Although the type II instabil-
ity seems irrelevant in this case as well, we cannot at the
moment dismiss a type I instability close to the clustering
transition. Indeed the entropically relevant clusters corre-
spond to values of m” close to one in this case, and it is
simple to show that the clusters at m=1 are type I unstable in
the case where there is a continuous transition: this is be-
cause the type I stability is equivalent to the convergence of
the 1RSB update on a single graph. Since for m=1 the av-
erages of the 1RSB fields satisfy the RS belief propagation
equations, and since we know from the RS stability analysis
in Sec. III C 3 that those equations do not converge in the RS
unstable region (i.e., for ¢>cgrg=4 in three-coloring of
Erdds-Rényi graphs), it then follows that the three-coloring
is unstable against state aggregation at m=1 for all connec-
tivities ¢>4. Therefore, it is possible that the 1RSB result
for three-coloring is only approximative for what concerns
the number and the structure of solutions close to the clus-
tering transition (note that the critical values for the phase
transition are, however, correct and do not depend on that).
This, and related issues [71], will be hopefully clarified in
future works.

To conclude, we believe that all the transition points we
discuss in this paper (and those computed in the K-SAT
problem in [42]) as well as the overall picture, are exact and
would not be modified by considering further steps of replica
symmetry breaking.

V. COLORING OF RANDOM GRAPHS: CAVITY RESULTS

We now solve the 1RSB equations, and discuss and inter-
pret the results. We solve Eq. (28) by the population dynam-
ics technique; the technical difficulties and the precision of
the method are discussed in Appendix D. Let us stress at this
point that the correctness of Eq. (28) is guaranteed only in
the limit of large graphs (N— ), unfortunately, the cavity
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method does not give us any direct hint about the finite
graph-size corrections. We start by the results for the regular
random graphs, then consider the ensemble of biregular
graphs and after that we turn towards Erdds-Rényi graphs.
Finally, we discuss the limit of a large number of colors.

A. Regular random graphs

Let us fix the number of colors ¢, vary the connectivity,
and identify successively all the transitions that we shall en-
counter. For the sake of the discussion, we choose as a typi-
cal example the six-coloring and we discuss later in details
the cases, for a different number of colors, where some tran-
sitions are missing or are arriving in a different order. We
solved the 1RSB equation (20) for regular graphs, where the
distribution P"/(4) is the same for every edge (ij) (see Ap-
pendix D) and plot the curves for %(s) we obtained doing so
in Fig. 4. We now describe the phase space of solutions when
the connectivity is increased:

(1) At very low connectivities ¢ <<q, only the paramag-
netic RS solution is found at all m, P()=8(y—1/q). The
phase space is made of a single RS cluster.

(2) For larger connectivities ¢ =g, we saw in Sec. IV C 3
that the 1RSB equations start to have nontrivial solutions
with hard fields in an interval [—cc,m,]. Interestingly, an-
other nontrivial solution, without hard fields, can be found
numerically in an interval [m,, ], and we shall call this one
the soft-field solution. As the connectivity increases, we find
that m, increases while m; decreases, so that the gap [m,,m,],
where no nontrivial solution exists, is getting continuously
smaller. However, there is no nontrivial solution at m=1 for
connectivities smaller than ¢, (see Fig. 4 for the example of
the six-coloring at ¢=17). This means that the Gibbs measure
(2) is still extremal. In other words the large RS state still
exists and is entropically dominant [its entropy (14) is noted
by a circle in Fig. 4]. Despite the fact that an exponential
number of clusters of solutions exist and that the SP equa-
tions converge to a nontrivial result, a random proper color-
ing will almost surely belong to the large RS cluster.

(3) If the connectivity is increased at and above the clus-
tering threshold c,, a nontrivial solution with positive com-
plexity 2 is found at m=1. In Fig. 4, we see that this happens
at ¢;=18 for the regular six-coloring. At this point, the RS
Gibbs measure (2) ceases to be extremal and the single large
RS cluster splits into exponentially numerous components.
To cover almost all proper colorings we need to consider
exponentially many clusters N~ "> =D The probability
that two random proper colorings belong to the same cluster
is going exponentially to zero with the system size. The con-
nectivity ¢, is thus the true clustering (dynamic) transition.
This is not, however, a thermodynamic phase transition be-
cause the IRSB total entropy reduces to the RS entropy (14)
at m=1, which is analytical in c. Thus the RS approach gives
a correct number of solution and correct marginals as long as
the complexity function at m=1 is non-negative.

(4) For even larger connectivities ¢ = c,, the complexity at
3(m=1) becomes negative, e.g., ¢.=19 for six-coloring. It
means that the clusters corresponding to m=1 are absent
with probability one. The total entropy is then smaller than
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FIG. 4. Complexity as a function of the internal state entropy for
the g-coloring problem on random regular graphs of connectivity c.
The full line corresponds to the clusters where a finite fraction of
hard fields (frozen variables) is present and the dotted line to the
clusters without hard fields. The circle signs the entropically domi-
nating clusters. (a) (g=4, ¢=9) is in the clustered phase; (¢=5, ¢
=13) is in a simple replica symmetric phase; and (g=35, c=14) is in
the condensed clustered phase. (b) Results for six-coloring for con-
nectivities 17 (RS), 18 (clustered), 19 (condensed), and 20 (uncol-
orable). For 4-, 5-, and six-coloring all the smaller connectivities
are in the RS phase while all the larger one are uncolorable.

the RS or annealed one and is dominated by clusters corre-
sponding to m" <1 such that 3(m")=0. The ordered weights
of the entropically dominating clusters follow the Poisson-
Dirichlet process (explained in Appendix B). As a conse-
quence, the probability that two random proper colorings be-
long to the same cluster is finite in the thermodynamic limit.
Another way to describe the situation is that the entropy
condenses into a finite number of clusters. This condensation
is a true thermodynamic transition, since the total entropy is
non-analytical at c. (there is a discontinuity in its second
derivative with respect to connectivity). The condensation is
analogous to the static (Kauzmann) glass transition observed
in mean field models of glasses [60,61].

(5) For connectivities ¢ = ¢, (c,=20 for six-coloring) even
the maximum of the complexity 2 (m=0) becomes negative.
In this case proper colorings are absent with probability go-

031131-12



PHASE TRANSITIONS IN THE COLORING OF RANDOM ...

ing to one exponentially fast with the size of the graph, and
we are in the uncolorable phase.

It is useful to think of the growing connectivity as addi-
tions of the constraints into a fixed set of nodes. From this
point of view the set of solutions, which exists at connectiv-
ity ¢, gets smaller when new edges are introduced and the
connectivity is increased. This translates into the cartoon in
the Introduction (Fig. 1) where all the successive transitions
are represented. Finally, another important transition has to
be considered:

(6) There is a connectivity ¢, beyond which the measure is
dominated by clusters that contain a finite fraction of frozen
variables. For the regular six-coloring, c¢,=19. We refer to
this as the rigidiry transition, by analogy with [72,73].

The presence or the absence of hard fields inside a given
cluster is crucial: if a cluster contains only soft fields, then
after the addition of a small but finite fraction of new con-
straints, its size will get smaller (or it will split). If, however,
a cluster contains a finite fraction of frozen variable, then
after adding a small but finite fraction of links the cluster will
almost surely disappear.

Since the connectivities of regular graphs are integer
numbers, we define the dynamical threshold ¢, as the small-
est connectivity where a nontrivial 1RSB solution exists at
m=1, the condensation transition c, as the smallest connec-
tivity where complexity at m=1 is negative, c, the smallest
connectivity where hard fields are present at m", and the
coloring threshold c; as the first uncolorable case. The sce-
nario described here is observed for all cases of the regular
ensemble, although, since connectivities are integers, the
transitions are not very well separated at small g. We sum-
marize the results in Table I.

Note that for ¢ > 3, the local RS stability discussed in Sec.
III C 3 is irrelevant in the colorable regime. The only subtle
case being for three-coloring of five-regular graphs where the
RS solution is only marginally stable, i.e., the spin glass
correlation function goes to zero only algebraically instead
of exponentially (from this point of view ¢=5 would corre-
spond to the critical point well known in the second order
phase transitions). More interesting cases will arise in the
other ensembles of random graphs.

B. Results for the biregular ensemble

The biregular ensemble allows us to fine-tune the connec-
tivity while preserving the factorization of the 1RSB solu-
tion, which is crucial for the numerical precision. It is actu-
ally more correct to say that the solution is “bi-factorized,”
as all the messages going from the nodes with connectivity
c to ¢, are the same and the other way around. The biregular
ensemble allows us to describe with large precision two in-
teresting cases, which reappear in the Erdés-Rényi ensemble
and which are not present in the regular ensemble (again, due
to the discrete nature of the connectivity). Let us remind here
that bipartite graphs are always two-colorable, but we con-
sider only the color symmetric cavity solutions and that is
why we get a nontrivial result from this ensemble.

In Fig. 5(a) is the result for the complexity as a function
of entropy 2(s) for four-coloring of 5-21-biregular graphs.
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TABLE 1. Top: The transition thresholds for regular random
graphs: cgp is the smallest connectivity with a nontrivial solution at
m=0; the clustering threshold c, is the smallest connectivity with a
nontrivial solution at m=1; the rigidity threshold c, is the smallest
connectivity at which hard fields are present in the dominant states,
the condensation c, is the smallest connectivity for which the com-
plexity at m=1 is negative, and c; is the smallest UNCOL connec-
tivity. Note that three-coloring of five-regular graphs is exactly criti-
cal for that ¢;,=5". The rigidity transition may not exist due to the
discreteness of the connectivities. Bottom: Values of m” (corre-
sponding to the dominating clusters), and in the range of [—% ,m,]
the hard-field solution exists, and in the range [my, ] the soft-field
solution exists.

q cgp [31] ¢y [53] c, Ce ¢, [31]
3 5 5* 6 6
4 9 9 10 10
5 13 14 14 14 15
6 17 18 19 19 20
7 21 23 25 25
8 26 29 30 31 31
9 31 34 36 37 37
10 36 39 42 43 44
20 91 101 105 116 117
q c m" m, mg

5 RS* 0.12 1.2(1)

4 RS -0.03 3.4(1)

4 9 1 0.41 0.41

5 12 RS -0.02 3.7(1)

5 13 RS 0.20 2.0(1)

5 14 0.50 0.90 0.90

6 16 RS ~0.02 43(1)

6 17 RS 0.05 3.2(1)

6 18 1 0.40 0.40

6 19 0.92 0.96 0.96

7 21 RS 0.01 47(1)

7 22 RS 0.17 3.2(1)

7 23 1 0.60 0.60

7 24 1 0.95 0.95

The replica symmetric solution on this case is locally stable.
We see clearly the gap between the hard-field and the soft-
field solution, and yet we are already beyond the clustering
transition c,; actually the system is in the condensed phase.
This example is similar to what happens for the four-coloring
of Erdds-Rényi graphs.

The second interesting case, Fig. 5(b), is given by the
results for 2(s) for the four-coloring of 4-c-biregular graphs,
which are RS unstable for ¢ >28. Both the clustering and the
condensation transitions coincide with the RS instability c,
=c,.=28. The survey propagation equations have a nontrivial
solution starting from cgp=37. The rigidity transition is at
¢,=49. Finally the coloring threshold is c,=57. Qualitatively,
the results for this 4-c-biregular ensemble are the same as
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FIG. 5. The complexity as a function of entropy for four-
coloring of biregular graphs. (a) 5-21-biregular graph, an example
where the entropy is dominated by clusters with soft fields while the
gap in the curve 3(s) still exists. (b) 4-c-biregular graphs for ¢
=36,39,42,45. In all these cases the replica symmetric solution is
locally unstable. In the dependence X(s) we see an unphysical
branch of the complexity, which is zoomed in the inset for ¢=39.

those for the three-coloring of Erdds-Rényi random graphs.

We see that for ¢ =42 the gap between the hard-field (full
line) and soft-field (dotted line) solution exists. For m>m;
there is a nonphysical nontrivial soft-field solution, the con-
vex part of the line in the figure, zoomed in the inset. It
means that for m<<m, we actually can find two solutions
depending on if we start or not with a population containing
enough hard fields. The unphysical branch survives even
when the gap [m,,m,] closes (see the example of ¢=45 in the
figure).

We would like to stress at this point the enormous simi-
larity of the soft-field part of the curve 3(s) to the one in Fig.
4 in Ref. [35]. Actually the variational results of [35] should
be very precise and relevant near to the continuous clustering
transition (this is also the case for the three-coloring of
Erd6s-Rényi graphs or for 3-SAT).

C. Results for Erdés-Rényi random graphs

For Erdds-Rényi random graphs obtaining the solution of
Eq. (28) is computationally more involved as the solution is
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no longer factorized. In the population dynamics a popula-
tion of populations has to be updated, which is numerically
possible only for small populations, and so one has to be
careful that the finite population-size corrections are small
enough (see details in Appendix D). However, all the com-
putations can be done with the same computational complex-
ity as for the regular graphs for m=0, the energetic zero
temperature limit (Sec. IV C 1), and for m=1 (Appendix C).
That is enough to obtain the SP, clustering, condensation,
and COL/UNCOL transitions (from which the first and last
one was computed in [30]). We can also compute exactly
when hard fields appear for m=1, eq. (C9), this transition is
further studied in [64]. Finally, using the generalized survey
propagation equation introduced in Sec. IV C 2, the rigidity
transition can be computed quite precisely.

1. General case for q >3, discontinuous clustering transition

The phase transitions in g-coloring of random Erdds-
Rényi graphs for ¢>3 are qualitatively identical to those
discussed in the case of random regular graphs. We plot the
results for the total entropy (number of solutions) and com-
plexity (number of clusters which dominate the entropy) in
the four- and five-coloring in Fig. 6.

At the clustering transition ¢, the complexity becomes
discontinuously positive, and the large RS cluster suddenly
splits in an exponential number of smaller ones. The total
entropy 3" +s" is given by the RS formula (14) up to the
condensation transition c... At the condensation transition the
complexity of the dominating clusters becomes zero, the to-
tal entropy s'=s"<sgg is given by the point where 3(s")
=0. The function s"'(c) is nonanalytical at the point c,; it has
a discontinuity in the second derivative. At the coloring
threshold c; all the clusters of solutions disappear; note, how-
ever, that the total entropy of the last existing clusters is
strictly positive (about a half of the total entropy at the con-
densation transition). That means that the COL/UNCOL tran-
sition is not only sharp but also discontinuous in terms of the
entropy of solutions. Note that the positive entropy has two
contributions: the trivial and smaller one coming from the
presence of leaves and other small subgraphs, and the non-
trivial and more important one connected with the fact that
the ground state entropy is positive even in the uncolorable
phase or for the random regular graphs.

Finally, we located the rigidity transition, when frozen
variables appear in the dominating clusters. For 3 =g =8 this
transition appears in the condensed phase. As the number of
colors grows it approaches the clustering transition. All four
critical values ¢y, ¢,, ¢., and ¢, are summarized in Table II;
values of ¢gp and ¢,(m=1) are given for comparison.

2. Special case of three-coloring, continuous clustering transition

The only case which is left to be discussed is the three-
coloring of Erdds-Rényi graphs. It is different from ¢>3
because the replica symmetric solution is locally unstable in
the colorable phase (see Sec. III C 3). The extremality con-
dition underlying the RS assumption ceases to be valid be-
cause of the mechanism discussed in Sec. III C 3, with a
divergence of the spin glass correlation length: the main dif-

031131-14



PHASE TRANSITIONS IN THE COLORING OF RANDOM ...

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06 |
0.04 - Poissonian graphs, qg=4 ]
002+ T 1

0 L L L L
8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

c

PHYSICAL REVIEW E 76, 031131 (2007)

0.18
0.16 | ]
0.14 + 4
012 }
01t
0.08 |

Poissonian graphs, g=5
0.06 r

0.04 1

0.02 } z (¢) 1

0 L L L L L L L
12.8 129 13 131 132 133 134 135 13.6 13.7

c

FIG. 6. The 1RSB total entropy and complexity of the dominating clusters for four- and five-coloring of Erdds-Rényi random graphs. The
complexity jumps discontinuously at the clustering transition ¢, while the total entropy stays analytical. The complexity disappears at the
condensation transition ¢, causing a nonanalyticity in the total entropy. Finally, the total entropy discontinuously disappears at the coloring

threshold. Dashed is the RS entropy left for comparison.

ference with the previous cases is therefore that the cluster-
ing transition is continuous and coincides with the conden-
sation transition.

However, the phenomenology does not differ too much
from the other cases: crg=c,=c.=4; the phase where the
entropy is dominated by an exponential number of states is
thus missing and the complexity corresponding to m=1 is
always negative (see Fig. 7 left together with the dependence
of the total entropy on the connectivity). Note that the curves
3(s) for the three-coloring have been already studied in
[38,39] where the authors considered, however, only the
range of connectivities c=[4.42,4.69]=[cgp,c,].

All the results derived for the four-coloring of 4-
c-biregular bipartite graphs are quantitatively valid also here.
We are thus not surprised by the fact that in interval ¢
=[4,4.42] the survey propagation algorithm gives us a trivial
result: simply the maximum of the curve 2(s) does not exist
yet there is no nontrivial solution at m=0. Yet, the entropy is
dominated by a finite number of largest clusters which do not
contain hard fields. The two solutions (hard-field and soft-
field) join at a connectivity around 4.55. Finally, at c,=4.66

the hard fields arrive to the dominating states (and in conse-
quence to all others).

3. Overlap structure

We now give some results about the overlap structure in
the random coloring to elaborate the intuition about clusters.
First, consider marginal probabilities zﬁs”_" within a cluster a.
Note that due to the color symmetry there exist another ¢!
—1 clusters different only in the permutation of colors. We
define the intracluster overlap of two solutions (averaged
over states) as

_l a2
—Nggt_«ws,.) Va- (41)

In the paramagnetic phase 6=1/¢, otherwise we have to
compute it from the fixed point of Eq. (20). The overlap
between two solutions which lie in two clusters, which differ
just by permutation 7 of colors is

TABLE II. Critical connectivities ¢, (dynamical, clustering), ¢, (rigidity, rearrangements), c,. (condensa-
tion, Kauzmann), and ¢, (COL/UNCOL) for the phase transitions in the coloring problem on Erd4s-Rényi
graphs. The connectivities cgp (Where the first nontrivial solution of SP appears) and ¢, ;) (Where hard fields
appear at m=1) are also given. The error bars consist of the numerical precision on the evaluation of the
critical connectivities by the population dynamics technique (details are given in Appendix D).

q Cq Cr Ce Cg Csp Cr(m=1)
3 4 4.66(1) 4 4.687(2) 4.42(1) 4911
4 8.353(3) 8.83(2) 8.46(1) 8.901(2) 8.09(1) 9.267
5 12.837(3) 13.55(2) 13.23(1) 13.669(2) 12.11(2) 14.036
6 17.645(5) 18.68(2) 18.44(1) 18.880(2) 16.42(2) 19.112
7 22.705(5) 24.16(2) 24.01(1) 24.455(5) 20.97(2) 24.435
8 27.95(5) 29.93(3) 29.90(1) 30.335(5) 25.71(2) 29.960
9 33.45(5) 35.658 36.08(5) 36.490(5) 30.62(2) 35.658
10 39.0(1) 41.508 42.50(5) 42.93(1) 35.69(3) 41.508
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FIG. 7. Left: The total entropy for three-coloring of Erdés-Rényi random graphs. The dashed line is the replica symmetric (also the
annealed) entropy, left for comparison. The complexity at m=1 is shown; it is negative for ¢ >4, however, for connectivity near to four it
is very near to zero. Right: The values of parameter m”, 3(m")=0, as a function of connectivity for g=3,4,5 and in the large ¢ limit. The
connectivity c is rescaled as (c—c.)/(c;—c,). It is striking that for ¢ >3 the curves are so well fitted by the large ¢ limit one. We are even
not able to see the difference due to the error bars which are roughly of the point size.

gL, a4
g-1 qlg-1)

where j is the number of fixed positions in the permutation =
(in particular, 5q= 8, and 8,=1/g). In Fig. 8 we show the
overlap structure for three- and four-coloring. The probabili-
ties that two random solutions have one of the overlaps can
be computed from the Poisson-Dirichlet process described in
Appendix B. In fact this is not a self-averaging quantity [29].

5= (42)

D. Large g asymptotics

We give here the exact analytical large g expansion of the
previous results. In the asymptotic computations the regular
and Erdés-Rényi ensembles are equivalent (the corrections
are of smaller order in ¢ than the orders we give). We refer to
Appendix E for the explicit derivation of the formulas.

At large g a first set of transitions arises for connectivities
scaling as g In g,

cgp=c,(m=0)=¢g[Ing+Inlng+1-In2+o0(1)],
(43)

¢, = c(m=1)=¢g[lng+Inlng+1+o0(1)]. (44)

q—®°
cgp was already computed in [31] and ¢, is the rigidity tran-
sition. The clustering transition has to appear before the ri-
gidity one c;<c,. For all the finite g cases we looked at, c,
was between cgp and c,.

A second set of transitions arises for connectivities scaling
as 2¢q In g. We found

c,=2qIng-Ing-2m2+o(l), (45)

¢;=2qIng—-Ing—1+o0(1). (46)

The condensation thus appears very close to the COL/
UNCOL transition and both are very far from the clustering
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FIG. 8. (a) Overlaps structure in three-coloring of random
graphs as a function of connectivity. The intracluster overlap (upper
curve) grows continuously from 1/3 at the clustering transition ¢
=4. In the figure from up there are §=3;, &y, and &,. (b) Overlaps
structure in four-coloring of random graphs as a function of con-
nectivity. The intracluster overlap (upper curve) jumps discontinu-
ously from 1/4 at the clustering transition ¢=8.35. The probability
that two random solutions belong to the same cluster, however, is
zero between the clustering and condensation transition
[8.35,8.46]. In the figure from up there are 5=6,, &, &), and &.

031131-16



PHASE TRANSITIONS IN THE COLORING OF RANDOM ...

0.8

0.6

0.4

0.2

24 3(s)

0

-0.2

-0.4 I I I

0 0.5 1 1.5 2

2gs

PHYSICAL REVIEW E 76, 031131 (2007)

sl 2(] SlOI((X) |

-0.8

FIG. 9. Analytical result for the large g asymptotics close to the COL/UNCOL transition for ¢=2gIng—Ing+a. Left: (rescaled)
complexity versus (rescaled) internal entropy for different connectivities. The condensation transition appears for a=-2 In 2. The maximum
of the complexity becomes zero at ¢, for a=—1. Right: Total entropy (s'!), complexity ("), and the parameter m" versus a. Notice how the
values for the total number of solutions are already very close to those for finite low ¢ in Figs. 6 and 7.

and rigidity transitions (those are on a half way in the phase
diagram).

We show also in Appendix E that for connectivity ¢
=2g In g—In g+, one has

2gs(m) =2"1n2, (47)

2g2(m) =2"-2-m2"In2 - a. (48)

Since the RS free energy is correct until c., which differs just
by constant from c,, that means that for all connectivities
below ¢, the number of solutions is correctly given by the
replica symmetric entropy (14). Indeed, the value s(m=1)
can be obtained by a large expansion of Eq. (14).

In Fig. 9 we plot the complexity of dominating clusters
3 =3(m"), the total entropy s°'=3"+s", and the physical
value of m" as a function of connectivity ¢=2¢ Ing-Ingq
+ a. Note that the properly scaled values of the total number
of solutions at ¢, and c,, and the values c,,c, themselves, are
already very close to those at g=3,4,5 [see Figs. 6 and 7
(left)]. The closeness is particularly striking for the values m"
for g=4 and g=5 [see Fig. 7 (right)].

These formulas show that in the large ¢ limit, near to the
coloring threshold, it is the number of clusters which change
with connectivity (i.e., @), and not their internal entropy
(size). In the leading order, adding constraints near to the
COL/UNCOL transition thus destroys clusters of solutions,
but does not make them smaller: this is due to the fact that
these clusters are dominated by frozen variables so that add-
ing a link kills them most of the time. We also computed the
entropy value at the condensation transition, and found s(m
=1)=In2/q. The entropy of the last cluster (exactly at the
COL/UNCOL transition) is s=1n2/2gq.

VI. ALGORITHMIC CONSEQUENCES

In this section we give some algorithmic consequences of
our findings. First, we discuss the whitening procedure. We
then introduce a random walk algorithm adapted from the
Walk-SAT strategy and study its performance. We show, in
particular, that the clustering or dynamical transition does not

correspond to the onset of hardness in the problem and argue
that it is instead the rigidity transition. Finally, we discuss the
performance of the belief propagation algorithm in counting
and finding solutions, and show that it works much better
than previously anticipated.

A. Whitening procedure

The whitening procedure as introduced in [65] can distin-
guish between solutions which belong to a cluster containing
hard fields and those which do not. Generally, whitening is
equivalent to the warning propagation (version of belief
propagation which distinguish only if a field is hard or not).
Warning propagation for coloring was derived in [30]. Let us
call u'=7=(1,0,0, ...,0) the hard field in the direction of the
first color, i.e., in the absence of node j the node i takes only
the first color in all the colorings belonging to the cluster in
consideration, and similarly for other colors. Denote '~/
=(0,0,0,...,0) if ¢// is not frozen in the cluster, we say
that the oriented edge i —j is then “white.” The update for
u’s follows from Eq. (4),

u;'ff:min< Dt 5“) —min( s u’;ﬂ"). (49)

r \kei-j " \kei-j

To see if a solution {s;} belongs to a cluster with frozen
variables or not we initialize a warning propagation with
uiﬁ" = 5&&, and update iteratively according to Eq. (49) until
a fixed point is reached (the updates every time converge,
because starting from a solution we are only adding white
edges). In the fixed point if all edges are white, then the
solution {s;} does not belong to a frozen cluster, or if some of
the edges stay colored (nonwhite), then the solution {s,} be-
longs to a frozen cluster. Note that in the K-SAT problem
(but not in general), whitening is equivalent to a more intui-
tive procedure, where the directed edges are not considered
[66,67].

We wish to offer here an explanation of a paradox ob-
served in [66,67]. The SP algorithm gives information on the
frozen variables in the most numerous clusters (m=0). Yet,
the solutions which are found by the standard implementa-
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tion (decimation and SP plus Walk-SAT) do not belong to
clusters with frozen variables, since they always give a trivial
whitening result (all directed edges are white) [66,67]. We
suggest that the decimation strategy drives the system to-
wards a solution belonging to a large cluster, which does not
contain frozen variables. In this case, it is logical that the
result of the whitening is trivial, as it is observed. We believe
this is reason why no nontrivial whitenings are observed so
far in the study of the K-SAT problem on large graphs.

Note that beyond the rigidity transition this argument does
not work anymore, since there all the dominant clusters con-
tain frozen variables. More precisely, for =9 we could, in
principle, end up in soft clusters even beyond the rigidity
transition (since that one concerns only the dominant states);
future works should investigate further if this is possible.
Interestingly, in the coloring problem we have not been able
to find solutions beyond the rigidity transition even with sur-
vey propagation algorithm (compare c, with the performance
of SP in [30]). Further, more systematic investigations have
to be done about these issues, employing other strategies for
the use of the survey propagation equations (for example, the
reinforcement [74]).

B. Walk-COL algorithm to color random graph

In this paper, we have computed the correct clustering
transition ¢, for the random coloring problem. Beyond this
transition, Monte Carlo algorithms are proven not to reach
equilibrium as their time of equilibration diverges [55,62]. It
was often claimed, or assumed, that this point corresponds to
the onset of hardness of the problem. However, the fact that
the physical dynamics does not equilibrate just means that
the complete set of solutions will not be correctly sampled—
indeed Monte-Carlo experiments clearly display slow relax-
ation [75]—but not that no solutions can be eventually
found. This simple fact explains the results of [32] where a
simple annealing procedure was shown to three-color an ER
graph beyond c,;=4.

In this section, we use a local search strategy, which does
not satisfy the detailed balance condition. Therefore, we do
not expect to be able to find typical solutions, however, it
might be possible to find some solutions to the problem. The
Walk-COL algorithm [87] is a simple adaptation of the cel-
ebrated Walk-SAT [76]. More precisely, we adapted the
method designed for satisfiability in [77]. Given a graph, and
starting from an initial random configuration, we recursively
apply the following procedures:

(1) Choose at random a spin which is not satisfied (i.e., at
least one of its neighbors has the same color).

(2) Change randomly its color. Accept this change with
probability one if the number of unsatisfied spins has been
lowered, otherwise accept it with probability p.

(3) If there still are unsatisfied nodes, go to step (1) unless
the maximum running time is reached.

The probability p has to be tuned in each different case
for a better efficiency of the algorithm. Typically, values be-
tween 0.01 and 0.05 give good results. We shall now briefly
discuss the performance of the algorithm, to illustrate the
two following points: (a) When the phase space is RS, we
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FIG. 10. Performance of the Walk-COL algorithm in coloring
random graphs for three-coloring (a) and four-coloring (b). We plot
the rescaled time (averaged over five instances) needed to color a
graph of connectivity c. The strategy allows one to go beyond the
clustering transition (c,=4 for three-coloring and c¢,=8.35 for four-
coloring) in linear time with respect to the size of the graph.

observe that Walk-COL finds a solution in linear time. (b)
Even in the “complex” phase for ¢>c,, the algorithm can
find in some cases solutions in linear time.

Concerning the first point, we tested the algorithm in the
RS phase of regular random graphs for g=3,4,5,6,7. In all
these cases, we were able to color in linear time all the
graphs of connectivities that correspond to a replica symmet-
ric solution. In particular, the cases (¢=3,c=5), (¢=5,c
=13), (¢g=6,c¢=17), (¢g=7,c¢=21), (q=7,c=22) are found to
be colorable with the Walk-COL algorithm even if a non-
trivial solution to the SP equations exists.

Concerning the second point, we considered the three-
and four-coloring of Erdés-Rényi random graphs. The results
are shown in Fig. 10 where the percentage of unsatisfied
spins versus the number of attempted flips (averaged over
five different realizations) divided by N is plotted. We ob-
serve that the curves corresponding to different values of N
superpose quite well (and that actually the results for N=2
X 10° are systematically lower than those for N=5 X 10%) so
that an estimation of the time needed to color a graph can be
obtained. The connectivities of these graphs are beyond the
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dynamical transition (c;=4 for three-coloring and c,=8.35
for four-coloring). It would be interesting to systematically
test Walk-COL, as it has been done for Walk-SAT in [77], to
derive the precise connectivity at which it ceases to be linear.

Already these results show that the dynamical transition is
not a problem for the algorithms. This can also be observed
in a number of numerical experiments for the satisfiability
[77,78] and the coloring [73,79] problems.

We believe, however, that the rigidity transition plays a
fundamental role for the average computational complexity.
A first argument for this is that, for large graphs, it seems that
all the known algorithms are only able to find solutions with
a trivial whitening, i.e., solutions that belong to clusters with-
out hard fields. Beyond the rigidity transition however, the
clusters without hard fields become very rare (in the sense
that all the dominating clusters and almost all the smaller,
more numerous ones, contain hard fields). For ¢ =9 maybe
the connectivity where hard fields appear in clusters corre-
sponding to 2(m)=0, m>1 should be considered. This sug-
gests that the known algorithms will not be able to find a
solution beyond this point.

A second argument is the following: local search algo-
rithms are either attracted into a solution or stuck in a meta-
stable state. These metastable states, in order to be able to
trap the dynamics, have to contain a finite fraction of hard
fields. Given an algorithm, determining which of these two
situations happens is not only a question of existence of
states, but also a question of basins of attraction and a theo-
retical analysis of such basins is a very difficult task so that
the precise analysis of the behavior of local algorithms re-
mains a hard problem. However, the metastable states are
known, from the cavity formalism, to be much more numer-
ous than the zero-energy states. Moreover, the basin of at-
traction of a zero-energy state that contains hard fields does
not probably differ much from those of the metastable state
(while, on the other hand, the basin of attraction of a zero-
energy state, which does not contain hard fields, might be
slightly different and arguably relatively larger). It thus
seems to us reasonable that local algorithms will get trapped
by the metastable states beyond the rigidity transition.

A similar conclusion was reached recently in [73] where
the recursive implementation of the Walk-COL algorithm
was studied and found to be somehow simpler to analyze.
Again the strategy was found to be efficient (with linear time
with respect to the size of the graph) beyond ¢, but below c,.
The precise algorithmic implications of the rigidity transition
thus require further investigation, maybe in the lines of
[73,78].

C. Belief propagation algorithm to color random graph

Another consequence of our results, that we already dis-
cussed shortly in [42], is that the standard belief propagation
(BP) algorithm gives correct marginals until the condensa-
tion transition. It is actually a simple algebraic fact that the
IRSB approach at m=1 gives the same results for the mar-
ginals (average probabilities over all solutions) as the simple
RS approach (see Appendix C). Moreover, the logarithm of
the number of solutions in clusters corresponding to m=1 is
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also equal to the RS one. This suggests one use the BP mar-
ginals (as was already suggested in [40]) and a decimation
procedure to find proper colorings. Compared with the SP
algorithm, which has computational complexity proportional
to ¢! (factorial), the BP is only g. We have seen, moreover,
that for large numbers of colors, the condensation point is
very close to the COL/UNCOL transition, so that BP could
be used in a large interval of connectivities.

As a simple application, we tested how the straightfor-
ward implementation of the BP algorithm plus decimation
allows one to find solutions of three- and four-coloring of
random Erdés-Rényi graphs. Note that in the three-coloring
the clustered but not condensed phase is missing, so the ar-
gumentation above does not concern this case. The algorithm
works by iterating the following procedures:

(i) Run BP on the graph for a given number / of iterations.

(i1) Consider the most biased variable, and color it with its
most probable color.

Two problems have to be mentioned. The first one is
rather trivial: since at the beginning all colors are symmetric,
the first color had to be put at random. The second one is
more serious and concerns the convergence of BP. Indeed,
we saw that there is local instability in the BP (replica sym-
metric) equations at connectivity ¢=4 for the three-coloring
of random graphs, so that the BP equations do not converge.
This seems to be a problem restricted to the three-coloring,
but even in the case of four or more colors, the BP equations
do not converge on the decimated graph when a finite frac-
tion (typically few percent) of variables is fixed. The reason
for that is to be understood.

Nevertheless, since we merely want to design an effective
tool to solve the coloring problem, we choose to avoid this
problem by fixing the number of iteration / at each step and
thus ignore the nonconvergence. We tried the method on both
the three- and four-coloring and obtained unexpectedly good
results. We used the following protocol in the code: We first
try to find a solution with /=10. If we do not succeed, we
restart with /=20 and once more with /=40. We tried that on
ten different samples for different connectivities. The prob-
ability to find a proper coloring with these conditions is
shown in Fig. 11.

We thus observe that the BP strategy is able to find solu-
tions, even beyond the condensation transition. This shows
clearly that the decimation procedure is a nontrivial one, and
that the problem is not really hard in that region of connec-
tivities. Note that the SP algorithm plus decimation has been
shown to work in the three-coloring very well until about
4.60 [30]: our results are thus very close to those obtained
using SP. This raises again the question of the rigidity tran-
sition ¢,=4.66, which might also be problematic for the deci-
mated survey propagation solver.

VII. CONCLUSIONS

Let us summarize the results. They are perhaps best illus-
trated looking back to the cartoon in Fig. 1, where the im-
portance of the size of clusters is evidenced. We find that the
set of solutions of the g-coloring problem undergoes the fol-
lowing transitions as the connectivity is increased:
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FIG. 11. Performance of the BP algorithm plus decimation in
coloring random graphs for three-coloring (a) and four-coloring (b).
The strategy described in the text allows one to color random
graphs beyond the clustering and even the condensation transitions.

(i) At low connectivity, ¢ <c,, many clusters might exist
but they are very small and the measure over the set of so-
lutions is dominated by the single giant cluster described by
the replica symmetric approach.

(ii) Only at the dynamical transition ¢, the giant cluster
decomposes abruptly into an exponentially large number of
clusters (pure states). For connectivities ¢, <c<c,, the mea-
sure is dominated by an exponential number of clusters. Yet,
the total number of solutions is given by the replica symmet-
ric entropy (14), and the marginals are given by the fixed
point of the replica symmetric equations (belief propagation)
(4). Starting from this transition the uniform sampling of
solution becomes hard.

(iii) At connectivity ¢, the set of solutions undergoes a
condensation transition, similar to the one appearing in mean
field spin glasses. In the condensed phase the measure is
dominated by a finite number of the largest clusters. The total
entropy is strictly smaller than the replica symmetric one and
has a discontinuity in the second derivative at c,.

(iv) When connectivity ¢, is reached, no more clusters
exist: this is the COL/UNCOL transition. Note that the en-
tropy of the last existing clusters is strictly positive, and not
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given only by the contribution of the isolated nodes, leaves,
and other small subgraphs, the COL/UNCOL transition is
thus discontinuous in entropy.

This picture is very similar to the well-known scenario of
the glass transition in temperature, with the dynamical and
glass (Kauzmann) transition [61]. In some cases, the main
one being the three-coloring of Erd6s-Rényi graphs, the clus-
tering and the condensation transition merge and a continu-
ous transition take place at c¢;=c,, which then coincide with
the local instability of the replica symmetric solution. Inter-
estingly, the variational approach of [35] is very precise near
to the continuous clustering transition. Since the 3-SAT prob-
lem behaves in the same manner, this solves the apparent
contradictions between the results of [35] and [24].

In addition to the transitions describing the organization
of clusters, another important phenomenon concerning the
internal structure of clusters takes place. A finite fraction of
frozen variables can appear in the clusters (a frozen variable
takes the same color in all the solutions that belong to the
cluster). We found that the fraction of such variables in each
cluster undergoes a first order transition and jumps from zero
to a finite fraction at a connectivity that depends on the size
of the cluster. In particular:

(v) There exists a critical connectivity ¢, (rigidity or freez-
ing) at which the thermodynamically relevant clusters—
those that dominate the Gibbs measure—start to contain a
finite fraction of frozen variables.

The results above were obtained within the 1IRSB scheme,
but should not change when considering further steps of RSB
(an exception might be the three-coloring near to the cluster-
ing transition).

We discussed some algorithmic consequences of these
transitions. First, the belief propagation algorithm is efficient
in counting solution and estimating marginals until the con-
densation transition. More interestingly, it can also be used,
just like survey propagation, together with a decimation pro-
cedure in order to find solutions as we numerically demon-
strated. Second, the dynamical transition is not the one at
which simple algorithms fail as we illustrated using the
Walk-COL strategy. For the three-coloring of an ER graph,
there is even a rigorous proof of algorithmic performance
beyond c,=4 and until c=4.03 [10]. We argued that, instead,
the rigidity phenomenon is responsible for the onset of com-
putational hardness. This is a major point that we hope to see
more investigated in the future.

Our study opens a way to many new and promising in-
vestigations and developments. For instance, we wrote the
equivalent of the survey propagation equations for a general
value of m, which has a particularly simple form for m=1
[Eq. (39)].

It would be interesting to use these equations to find so-
Iutions. The behavior at finite temperature and the perfor-
mance of the annealing procedure are also of interest. It
would furthermore be interesting to rediscuss other finite
connectivity spin glass models such as for instance the lattice
glass models [56] in the light of our findings. The stability
towards more steps of replica symmetry breaking, or the su-
persymmetric approach [71], should be further investigated.
Finally, it would be interesting to combine the entropic and
energetic approach to investigate the frozen variables in the
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metastable states. We hope that our results will stimulate
activity in these lines of thought.
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APPENDIX A: STABILITY OF THE PARAMAGNETIC
SOLUTION

In this appendix, we show how to compute the stability of
the paramagnetic solution towards the continuous appear-
ance of a 1RSB solution. This happens, as usual for continu-
ous transition, when the spin glass correlation length, or
equivalently, the spin glass susceptibility, diverges. Obvi-
ously, the presence of the diverging correlation length invali-
dates the premise of the RS cavity method. Recall that the
spin glass susceptibility is defined as

1 -
XSGz_E <Si'5j>§’ (A1)
N<
L]
and can be rewritten for the present purpose as
Xsa= 2 YE(Sy - 527, (A2)
d=0

where we consider the average over graphs, in the thermo-
dynamic limit, where spins s, and s, are at distance d. The
factor ¥ stands for the average number of neighbors at dis-
tance d, when d <In N. Assuming that the limit for large d of
the summands in Eq. (A2) exists (with the limit N— o0 per-
formed first), we relate it to the stability parameter as fol-
lows:

N = lim [ E((5) - 5,)7)]". (A3)
d—x

Then the series in Eq. (A2) is essentially geometric, and

converges if and only if N<1.

Using the fluctuation-dissipation theorem we relate the
correlation (sus,), to the variation of magnetization in s,
caused by an infinitesimal field in s,. Finally, using the fact
that we perform the large-N limit first, the variation above is
dominated by the direct influence through the length-d path
between the two nodes, and this induces a “chain” relation: if
the path involves the nodes (d,d-1,...,0) we have

—0\2
E((So - S7) = chEM TrE[ (%) ]
acd

= CTrE|: i (a‘wl_l ﬂ . (A4)

e &W+1~>l
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The stability parameter of the paramagnetic solution of
the cavity equations towards small perturbations can be com-
puted from the following Jacobian:

o

o v
which gives the infinitesimal probability that a change in the
input probability tﬁ(zfl will change the output probability
z,/fro. The index RS says that the expression has to be evalu-
ated at the RS paramagnetic solution.

This matrix has only two different entries, all the diagonal
elements are equal, and all the nondiagonal elements are also
equal. As an immediate consequence all Jacobians commute
and are thus simultaneously diagonalizable so that it will be
sufficient to study the effect after one cavity iteration (one
step in the chain). The matrix T has only two distinct eigen-
values,

T’TO’

, (A5)

>

RS

N &l/l{ﬁo 0—,‘1[,}—»0
1= AN 2—1
Y, I,

1—0 1—0
- (‘?‘ rg-12 ) (A6)

1
(?l//%_)] 0%—»]

The second eigenvalue corresponds to the homogeneous ei-
genvector (1,1,...,1) and describes a fluctuation changing
all zﬁiﬂl ,7=1,...,q, by the same amount, and maintains the
color symmetry. It is thus not likely to be the relevant one
and we will see that indeed A,=0. The first eigenvalue, how-
ever, is (g—1)-fold degenerate and its eigenvectors are
spanned by (1,-1,0,...,0), (0,1,-1,0,...,0),...,
(0,...,0,1,-1). The corresponding fluctuations explicitly
break the color symmetry, and are in fact the critical ones.
Using the cavity recursion (4), the two derivatives simply
read

RS

oM Y
P = )1—(1—6“’)9//?’
gy . (y %) y
—=(1-¢F) By 21 By.2—1 )
2 I-(1=ePy! 1-(1-eP)yy
(A7)

so that the values of the two eigenvalues evaluated at the RS
solution, where all ¢ are equal to 1/¢, are

1
N=—"T—, MN\=0.
1— q
l—e?

(A8)

The stability parameter (A3) is thus N=yA? and the critical
temperatures below which the instability sets in are

q
T%(g,c) =— 1/1n<1 - ——)
1 ve=1+1
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TfR(q,c)=—1/1n<1— A ) (A9)

Ve+1

for regular and Erd6s-Rényi graphs, respectively. Thus at
zero temperature the critical connectivities read

C;:E stab.:q2_2q+2’ Cgl; stab.:q2_2q+ 1. (AlO)

These results coincide perfectly with the numerical simula-
tions of the cavity recursion of [32]. The analytical expres-
sions equivalent to Eq. (A9) were in fact first obtained in
[57] in the context of the reconstruction problem on trees as
an upper bound for the Gibbs measure extremality, and its
connection with the statistical physics approach was ex-
plained in [53]. The case of biregular random graphs can be
easily understood by noticing that two recursions should be
considered, one with y=c;—1, and one with y=c,—-1. As a
consequence, the stability point is equivalent in this case to
the one of a regular random graph with an effective connec-
tivity equal to c=1++/(c;—1)(cy—1).

Another instability appears when y|\,| > 1. This has been
referred to as the modulation instability in [56]. Actually, this
is the continuous instability towards the appearance of the
antiferromagnetic order. Since at zero temperature \;=(1l
—q)~", then for connectivities larger than c,,,q=¢ for random
regular graphs (and c¢p,oq=¢—1 for Erdds-Rényi) the para-
magnetic solution becomes unstable towards the antiferro-
magnetic order. However, this is correct if we study a tree
with some given (and well chosen) boundary condition, but
as noted in [56], the antiferromagnetic solution is impossible
on random graphs because of the existence of frustrating
loops of arbitrary length. The cavity equations (4) can actu-
ally never converge towards an antiferromagnetic solution of
a random graph. Instead, when iterating, the fields oscillate
between different solutions (thus the name modulation).

In other words, although on a random tree with special
boundary conditions there exists for ¢ > c,,q a nontrivial so-
lution to the cavity recursion (for the Gibbs state is no longer
unique [Eq. (15)]), this solution does not exist on a random
graph (and the Gibbs state is still extremal [Eq. (16)]). Note
that this instability could anyway be a source of numerical
problems that can be overcome considering that the distribu-
tion of cavity fields P(¢) over the ensemble of random
graphs has to be symmetric in the color permutation. Another
possibility is to randomly mix the new and old populations in
the population dynamics so that the antiferromagnetic oscil-
lations are destroyed.

APPENDIX B: THE RELATIVE SIZES OF CLUSTERS
IN THE CONDENSED PHASE

In this section, we introduce the Poisson-Dirichlet point
process and we shortly review some of its important proper-
ties. We also sketch its deep connection with the size of
clusters in the condensed phase. Poisson-Dirichlet (PD) point
process is a set of points {x;}, i=1,...,% such that x;>x,
>x3>-- and 2 ,x;=1. To construct these points we con-
sider a Poisson process {y;}, i=1,...,% of intensity measure

y~!7  0<m" <1 (note that this measure is not a probability
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FIG. 12. The sketch of size of the largest clusters for a given
value of parameter m”. The lower curve is related to the average
size of the largest clusters as 1/E[1/x,]=1-m". The following
curves are related to the size of i largest clusters, their distances are
E[RJELR;,]- - E[R,](1 —m*).

measure). We order the sequence {y;} in such a way that y,
>y,>y3>--- and define the PD point process as

x;= =4 (B1)

2%‘

i=1

If we identify the parameter m" with the value for which
the complexity is zero, 2(m")=0, then y; is proportional to
the number of solutions in cluster i (or to e #¥ for nonzero
temperature), and x; is the size on that cluster relative to the
total number of solutions. This connection was (on a nonrig-
orous level) understood in [80] (for more mathematical re-
view see [81]). Note that due to the permutation symmetry in
graph coloring there are every time ¢! copies of one clusters
(different in the color permutation).

To get a feeling about the PD statistics let us answer in
Fig. 12 the following question: Given the value m" how
many clusters do we need to cover fraction r of solutions, in
other words, what is the smallest k such that =¥ x;>r? The
mathematical properties of the PD process are very clearly
reviewed in [82]. To avoid confusion, note at this point that
the PD process we are interested in is the PD(m",0) in the
notation of [82]. In the mathematical literature, it is often
referred to as the PD(0, ) without indexing by the two pa-
rameters. Let us be reminded of two useful results. Any mo-
ment of any x; can be computed from the generating function

Elexp(—= Mx)]=e ™ ,«(N) ™ ,-(N) 7, (B2)

where A =0 and the functions ¢, and ¢, are defined as

o

b,(\) = m*J e")‘xx_l_m$dx,

1

(B3)
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1
PN =1+m" f (1 - ™M) d., (B4)
0

Another relation is that the ratio of two consequent points
Ri=x;,1/x;,i=1,2,... is distributed as im R"” ~! In particu-
lar, its expectation is E[R,]=im"/(1+im") and the random
variables R; are mutually independent. We used these rela-
tions to obtain data in Fig. 12.

APPENDIX C: THE 1RSB FORMALISM AT m=1
AND THE RECONSTRUCTION EQUATIONS

In this appendix we discuss the considerable simplifica-
tion of Eq. (28) that is obtained by working directly at m
=1. This was first remarked and proved in [53] when dealing
with the tree reconstruction problem (for a discussion of a
case where the RS solution is not paramagnetic, see [43]).
We first introduce the probability distribution of fields (20)
averaged over the graph

P(y) = f dPPLP()1P(h)

k
1 . )
=2 Q0 | LLayPw)dy- Fiwhlz,
k 1 i
(C1)
where Z; is computed from Eq. (20) as

H dy P (Y)Z, = Z H (1- (C2)

j=1i=1

where ¢=[diP()) . Generally, ¢ is a solution of the RS
equation (12), which is easily seen from Egs. (20) and (28).

Since the RS solution is the paramagnetic one ¢=1/g the
form of Z; is particularly simple.

- Bf(B) = 29(k> 2 > Hw(s |s)

YkSQll

where the normalization factors Zj,, ZJ are defined by Eqs.
(6) and (8). The complexity follows from Eq. (24). Since the
replicated free energy ®(B,1) is equal, according to Eq.
(27), to the total free energy, we showed the statement used
several times in the paper, i.e., the total free energy (entropy)
at m=1 is equal to the replica symmetric free energy (9).
Another important point is that one can write the recur-
sion separating the hard and soft fields. In general, at zero

temperature, we can write the distribution ﬁq(z,//s) in Eq. (C4)
as
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In the next step, we want to get rid of the term Z, in Eq.
(C1). We thus introduce ¢ distribution functions P:.,

P() = qy,P(i).
It is then easy to show that if 1,_b= 1/q then P,(1) satisfies

P(y) = Eka) E Hw(s Is)féw

Skll

(C3)

- f({w})]H dy/P, (), (C4)
i=1

where

(ss) = 1—(1=eP)&(s;,s)
T ==

We solve Eq. (C4) by population dynamics. In order to do
this, one needs to deal with g populations of g-component
fields, and to update them according to Eq. (C4). It is only a
functional equation and not a double functional as the gen-
eral IRSB equation (28). Moreover, the absence of the re-
weighting term Z; simplifies the population dynamics algo-
rithm significantly. Finally, it is important to note that the
computational complexity here is the same as the one for
regular and ER random graphs.

A crucial theorem is also proven in [53]: the population
dynamics of Eq. (C4) has a nontrivial solution if and only if
it converges to a nontrivial solution starting from initial con-
ditions

(Cs5)

P () = 8(r,s). (C6)

This shows that when a paramagnetic solution is found, then
no other solutions exist.

Similar manipulations allow us to obtain the replicated
free energy (21), which is equal in this case to the replica
symmetric free energy (9), and the free energy (26) inside the
corresponding states as

(lnzo>Hd¢/P (W) - 22 ”(#“) J (In ZH)dy' dy? P, ($1)P (), (CT)

51,82

P.() = E/.L”rm 1)+(1—2MH)P('/’) (C8)

Plugging this to Eq. (C4) and taking into account the initial
condition (C6) and color symmetry, we see that u,
=qnd(q,s), where 7 satisfies

k
an= EQ(k)E( 1)’”( 1)(1—;’7‘%). (c9)

m=0 1
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On ER graphs, the sum can be performed analytically and
one finds

qn= (1 _ e—[qnc/(q—l)])q—l. (C10)

This equation can be solved iteratively starting from
7™=1/q. Tt is a very simple equation, as the one obtained
for m=0, which gives us a very efficient way to compute the
fraction of hard fields at m=1 for both regular and ER
graphs. Indeed # is larger than zero only above a certain
average connectivity c(m=1).

APPENDIX D: NUMERICAL METHODS

In this section, we detail the numerical methods we used
to solve the 1RSB equations (20) and (28), and the proce-
dures used to generate the data. We use a population dynam-
ics method, as introduced in [26,27], and model the distribu-
tion P7/(/~J) by a population of N vectors ¢ /. To
compute P'/(y/ /) knowing the P*~i(4/~7) for all incom-
ing k we perform the 1RSB recursion in Eq. (20) in two
steps: (i) first we compute the new vectors ¢~/ using the
simple RS recursion in Eq. (31) (this is the iterative step) and
(ii) we take into account the weight (Zf)_’j)’” for each of the
vectors (this is the reweighting step). For the reweighting we
tried different strategies; two of them perform very well.

(a) For every field # in the population, we keep its weight
Zy. We then compute the cumulative distribution of weights
Zy, and sample uniformly the incoming fields. Using di-
chotomy we generate a random field with its proper weight
in O[In(N)] steps. A complete iteration thus takes O[N In N]
steps.

(b) We compute N new vectors and then we make a new
population when we clone some of them while erasing others
so that in this new population each field is present according
to its weight (in principle, one can even change the size of
the population, although we have not implemented this strat-
egy). This second approach can be implemented in linear
time (generating an ordered list of random numbers is a lin-
ear problem; see [83]), but is a bit less precise as we intro-
duce redundancy in the population.

We finally choose to use the second strategy, as we ob-
served that it performs almost as good as the first one (for a
given size of population) while it was much faster, so that,
for given computer time, it allows a better representation of
the population. We also force the population to be color sym-
metric by adding a random shift of colors in the incoming
messages. This is needed in order to avoid the antiferromag-
netic solution. The learned reader will notice that this is
equivalent to solving a disordered Potts glass instead of an
antiferromagnet model. Indeed the fact that an Ising antifer-
romagnet on a random graph is equivalent to an Ising spin
glass was already noticed [84].

Another important issue is the presence of hard fields. In
Fig. 13 are histograms of the first component of the vectors
in the population for three- and four-coloring of five- and
nine-regular random graphs, respectively. It is interesting to
see how they peak around fractional values due to the pres-
ence of hard fields (see the three upper ones). Maybe even
more interesting are the lower ones where no hard fields are
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FIG. 13. Histograms of the first component of the cavity field
Y, i.e., the probability that a node takes color one. Notice the
logarithmic y scale. Frozen fields (¢;=1) are present in the solution
for the three upper cases; there are delta peaks on 0, 1, 1/2, and
other simple fractions depending on g. Notice that even when fro-
zen fields are not present, there are many almost frozen fields (the
distributions only concentrate around 0, 1, 1/2, and other fractions).

present. However, since there are soft fields with values 1
—€, where € can be almost arbitrarily small, one cannot see
from these pictures the absence of frozen variables. For the
case ¢=9, g=4, m=0.8 for instance, the presence of the
quasihard fields makes the distribution clearly concentrate on
values around one, zero, and half (note, however, that the
amplitude—on a logarithmic scale—is far less important).
The quasihard fields are therefore very hard to distinguish
numerically from the true hard ones. This is evidenced in
Fig. 14 where we plot the fraction of hard fields computed
using the expression (38) together with a numerical estimate
made by population dynamics without the separate hard and
soft implementation. We show that the fraction of fields of
value 1-¢€ is not zero in regions where we know that there
are no hard fields even for e=1072°. This demonstrates the
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FIG. 14. Fraction of the hard and the quasihard cavity fields g»
(a field is quasihard if s> 1—e¢) in the four-coloring of nine-regular
graphs. The bold line is obtained with the analytical computation of
the fraction of hard fields and the dot corresponds to the threshold
m,.

presence of quasihard fields, with € going to zero as the
critical m is approached. This transition is further studied in
[64].

An important simplification of the 1RSB update (20)
arises when we consider the soft and the hard fields sepa-
rately. The fraction of hard fields can be computed using the
generalized SP equation (38), provided the ratio Zj,/Zp 4 is
computed. This considerably reduced the size of the popula-
tion as only soft field has to be kept in memory. Another way
to further speed up the code is to generate directly soft fields
with a uniform measure instead of waiting for them to come
out from the 1RSB recursion. Indeed they might be quite rare
in the region of small m and one can spend a considerable
amount of time before being able to sample them correctly.
Generating the soft fields with a uniform weight turns out to
be rather easy using the following method: (i) Choose two
random colors ¢, and ¢,. (ii) Perform the usual recursion
(31) in order to have a new vector but forbid incoming hard
fields to ¢g; and g,. (iii) To obtain a uniform soft-field gen-
erator, the resulting field should be weighted by 1/ (5) where
s is the number of non-null components in the vector. This is
specially useful in the case of Erdés-Rényi graphs.

The formula for the free entropy @ (m) (32) also simpli-
fies in this case. Consider a given site i; the site-free entropy
term can be split into three parts when (i) the field is hard,
(ii) the total field is soft, and (iii) the field is contradictory.
Then

(I); = ln[phard(zhard)m + psofl(Zsofl)m] ’ (Dl)
where pp.q O Peoii are the probabilities that the total field is
frozen or soft, and are given by the SP recursion. Indeed the
probability that the total field is not contradictory (ppgq
+Psoft) 18 the denominator in Eq. (35) while py,.q is the nu-
merator of Eq. (35). The link part can also be simplified
using the fact that contradictions arise when two incoming
frozen messages of the same color are chosen, so that
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®lﬁ‘j = ln[pno Contr(Znn C()n[l")m:L (Dz)
where Pro contr is Slmply (1 —Qﬂi_)j 7]j_>i)~

For m=0 the formula further simplifies as Z; ,=Zwq
=Zn =1 so that

no contr

gq-1
<I>f;=1n(2(—1)’( I )H[l—(1+1>wi]>, (D3)
I+1)7%

=0

D =In(1 - g~ 5.

This is precisely what was obtained within the energetic cav-
ity approach in [30]. The numerical population dynamics
implementation with mixed hard and soft strategy is there-
fore as precise as it could be since we obtain the exact evalu-
ation in the m=0 case. This simple computation also demon-
strates how one can recover the energetic zero temperature
limit from the generic formalism.

Finally, we obtain the function ®(m). We fit this function
using an ansatz ® (m)=a+b2"+c3"+--- and then perform
the Legendre transform to obtain the entropy and complexity.
It is also possible to compute directly the complexity from
the population data using the expression of the derivative of
the potential directly in the code. Both methods lead to very
good results. We show an example of the raw data and their
fit in Fig. 15, where the data have been obtained with rela-
tively small population (N=5000) but where the mixed strat-
egy separating the hard and soft fields have been used. For
the purely soft-field branch, we used N=50000. It took a
few hours up to a few days to generate these curves on
present Intel PCs.

In the case of biregular random graphs, one needs two
different populations: one for the fields going from nodes
with connectivity ¢; and one for the fields going from nodes
with connectivity c¢,. Then each iteration for population 1
(respectively, 2) should be performed using as incoming
messages the vectors of population 2 (respectively, 1.).
Again, one can separately perform the recursion for the hard-
field fractions in both populations.

The case of Erdés-Rényi random graphs is more involved,
as one needs a large number N, of populations, each of
them of size N. In this case, using the separate hard and soft
fields implementation and the formulas (D1) and (D2) for
complexity is crucial, as it allows a good precision even for
smaller population sizes. We used typically 2N,,,/c= (1
—-3) X 10% and N= (1-3) X 102. The error bars in Table II are
computed from several independent runs of the population
dynamics. In each case we were able to make the equilibra-
tion times and the population sizes large enough such that by
doubling the time or the population size we did not observe
any significant systematic changes in the average results.

(D4)

APPENDIX E: HIGH-¢ ASYMPTOTICS

The quenched averages in the large g limit are the same
for the regular and Erd6s-Rényi graphs and we thus consider
directly the regular ensemble of connectivity c=k+1. The
appearance of a nontrivial 1RSB solution for m=0, which
corresponds to cgp, was already computed in [31] and reads
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FIG. 15. The numerical results for the free entropy (30) and its
fit with a function a+b2*+c3*+--- for the six-coloring of 19-
regular graphs and the four-coloring of nine-regular graphs. Circles
give the analytical results at m=0 and m=1. On the right parts, we
present the complexity versus internal entropy with the numerical
points and the Legendre transform of the fit of the free entropy. The
analytical result for %, is also shown.

c(m=0)=cgp=q[lng+Inlng+1-In2+o0(1)],
(E1)

@l -
Ing

1 1
nd(m=0)=—[l——+
q Ing

while the coloring threshold is [31]
¢,=2gIng—-Ing—-1+o(1). (E3)

We now show how the connectivity where a solution with
hard fields at m=1 first appears, and how the complete free
entropy ®(m) [Eq. (30)] can be computed close to the COL/
UNCOL transition.
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1. Appearance of hard fields at m=1

We first show that the correct scaling for the appearance
of hard fields at m=1 is

k=g[lng+Inlng+ a], (E4)

and compute the value of «. In the order O(g) we can write
also k=(g—1)[In(¢—1)+In In(¢g— 1)+ a]. The starting point is
Eq. (C9), with Q,(x)=8(x—k). In the large ¢ limit the frac-
tion of hard fields is wu(q.k)=qn(q.k)=1-06(q,k), where
6(g,k)=0(1) is the fraction of soft fields. We check self-
consistently at the end of the computation that only the two
first terms of Eq. (C9) are important. Then we have

k
wg.k)=1-(q- 1)(1 L M(q,k))
g-1

=1-(q- 1)8—[k#(q,k)/(q—l)]. (ES)
A self-consistent equation for #(q,k) follows:
In(g = 1)0(g.k) = (g = 1)"*Me?, (E6)
which is solved by 6(q,k)=y(a)/In(g—1) where
Ha)e ¥ = ¢, (E7)

The maximum of the left-hand side is 1/e for y(a)=1. It
means that a solution of Eq. (E7) exists for > 1. Finally, the
hard fields appear in the 1RSB solution for m=1 at connec-
tivity

c,im=1)=¢g[lng+Inlng+1+o0(1)]. (ER)

The clustering transition c¢,; should be between cgp and
¢,(m=1) as this is what we observed for finite g. We see that
csp and ¢, (m=1) differs only in the third order and both are
very far from the coloring threshold and also from the con-
densation transition as we show in Appendix E 2. It would be
interesting to compute a large g expansion of the connectiv-
ity at which the hard fields appear in all the clusters (for all m
such that 3 (m)>0). Together with our conjecture about ri-
gidity being responsible for the computational hardness, that
might give a hint about the answer on the long-standing
question [22]: “Is there a polynomial algorithm and € such
that the algorithm would color random graphs of average
connectivity (1+€)q In g for all large ¢?”

2. Condensation transition

To compute the large-g asymptotic of the condensation
transition, we first need to derive the large-g expansion of the
free entropy (30) in the connectivity regime c¢=2¢ In ¢. Let
us show self-consistently that the following scaling is rel-
evant for the condensation transition in the large ¢ limit:

c;=2¢gIng—-vylng+«, (E9)
1 B
77=___2’ (EIO)
q9 4

and compute the constants 7y, «, B. Using the above scaling,
the function w(#) (35) is dominated by the first two terms in
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the numerator and denominator, and reads in the first two
—k
leading orders 1—gw(7n)= e%” so that

11 Ing
et oft)
q 2q 7

(E11)

independently of v, «, and B. To take into account the re-
weighting we expand Eq. (38) in the two leading orders

Loz (1_q>

n= 2 ZZ[ q3 :

(E12)

Note that almost all the incoming fields are hard, i.e., have
one component of value 1. Since there are on average only
2B In g incoming soft fields, the leading order of the hard-
field reweighting [the normalization in Eq. (4)] is different
from 1 with a probability only O(In g/¢). Similarly, almost
all the soft fields have two nonzero and equal components.
The normalization in Eq. (4) is thus almost surely 2, thus the
average reweighting factor of the soft fields is

— 1
Z"=2"y O(M). (E13)
q
Finally,
1o In
77=———2+0<—3q>. (E14)
q 2q q

Therefore the constant B in Eq. (E10) is B=2"/2, indepen-
dent of vy and a.

The computation of the complexity requires the next order
in the hard-field reweighting. Indeed the normalization in Eq.
(4) might not be 1 but 1/2; and this happens when there is a

soft field arriving of the color corresponding to the hard field
2c(1-q7)

q

in consideration. The probability of this event is
=(’)(—q;). The hard-field reweighting is thus

In

o 2¢(1-gn) | 2c(l-gn 1 Ing

Zr=1|1- + — 4ol —|.
q q 2 q

(E15)

We now expand the replicated free energy (30) in the
large ¢ limit and regime (E9). We remind one that from Egs.
(6) and (8),

®,(m) = In(Zh)" - % In(Z)". (E16)
The averages are over the population in the sense of Eq. (21).

The site free energy is the logarithm of the average of the
total field normalization. This average can be split into three
parts when (i) the total field is a hard field, (ii) the total field
is a soft field, and (iii) the total field is contradictory (and its
normalization zero). The probability that the total field is not
contradictory is the denominator in Eq. (35),

q-1
q C
g(v)=§)(—l)l(l+1)[1—(1+1)7]], (E17)

where again only the first two terms are relevant in the ex-
pansion. The site free energy is then
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In(Z))" = In g(n) + In[qw(n)Z} +{1 - qw()}Z"]

~ 1n|:q(1 - )= —q(qz_ 1)(1 - 277)C:|

1 2c(1-gn) 1) 2m 1
+In|1-—-———"|1-— |+ |+0| - |,
2q q 2 2q q
(E18)

where

h{q[l — gl + —q(qz_ Dy —27;]0}

—1[1-29]
=lnq+cln[1—7]]+ln<1—q— . )
2 1-7

12" 1
zlnq+cln{l——+ }+ln{l——+0(1/q)}.
q 24 2q

(E19)

To compute the link contribution in Eq. (E16) we need to
consider two fields ¢,/ and /' and to compute

q

ZH=1-2 gy,

s=1

(E20)

There are three different cases:

(1) Two hard fields are chosen, then Zg =0 with probabil-
ity g7 (this is of order 1/¢) and Zj=1 with probability
q(g—=1)77 (this is of order 1).

(2) Two soft fields are chosen, then Zj=1 with probability
(1-gm)? (this is of order 1/4?), all other situations being
O(1/¢%). Let us remind one that the dominant soft fields are
two-component of type (1/2,1/2,0,0,...).

(3) One hard and one soft field is chosen, then Zg =1 with
probability 27(1-gn)(g—2)/q, and ZJ=1/2 with probabil-
ity 47(1—gm) (this is of order 1/4?).

On average, one thus obtains for the link contribution,

m(Zé;W:ln[[l ~ g a1 =g 1"+ A1 ~qn) 5

43)

Putting together the two pieces (E18) and (E21), expand-
ing 7 according to Eq. (E14), and considering only the high-
est order in ¢, we can finally write the free energy as

(E21)

2m-2 ¢

1
——2+0<—). (E22)
2qg 4q q

b (m)=Ing- i+
2q

The internal entropy s(m) and the complexity 2= (m)
—ms(m) are then

g®,(m) 2"In2

, E23
om 2q (E23)

s(m) =
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2"M-2-m2"In2 ¢

-—, (B24
2 Py (E24)

c
S(m)=lng——+
2q
and the complexity is thus zero for cy_y=2¢gIng—-Ing-2
+2"[1-mIn 2]+0(1). In particular, one has for the coloring
and the condensation thresholds,

csoom=0)=2gIng—Ing—1+o0(1), (E25)
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csolm=1)=2gIng—Ing-2In2+o0(1). (E26)

For connectivity c=2¢q In g—In g+ «, one gets
2gs(m) =2"1n2, (E27)
2¢3(m) =2"-2-m2"In2 - a. (E28)
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